A Privacy-Preserving Incentive Scheme for Data Sensing in App-Assisted Mobile Edge Crowdsensing

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE/ACM Transactions on Networking Pub Date : 2024-11-06 DOI:10.1109/TNET.2024.3431629
Liang Xie;Zhou Su;Nan Chen;Yuntao Wang;Yiliang Liu;Ruidong Li
{"title":"A Privacy-Preserving Incentive Scheme for Data Sensing in App-Assisted Mobile Edge Crowdsensing","authors":"Liang Xie;Zhou Su;Nan Chen;Yuntao Wang;Yiliang Liu;Ruidong Li","doi":"10.1109/TNET.2024.3431629","DOIUrl":null,"url":null,"abstract":"Application (App)-assisted mobile edge crowd- sensing is a promising paradigm, in which Apps are in charge of tagging the location of the sensing tasks as point-of-interest (PoI) to assist the platform in recruiting users to participate in the sensing tasks. However, there exist potential security, incentive, and privacy threats for App-assisted mobile edge crowdsensing (AMECS) due to the presence of malicious Apps, the low-quality shared sensing data, and the vulnerability of wireless communication. Therefore, we propose a differential privacy-based incentive (DPI) scheme for AMECS to provide secure and efficient crowdsensing services while protecting users’ privacy. Specifically, we first propose an App quality management mechanism to correlate the behavior of each App with its quality and then select reliable Apps based on quality thresholds to assist the platform in recruiting users. With the designed mechanism, we further present an auction game-based incentive mechanism to encourage Apps to mark the location of the sensing tasks as PoI. To protect the privacy of users, a privacy-preserving sensing data sharing algorithm is devised based on differential privacy. Further, given the difficulty of obtaining accurate network parameters in practice, a reinforcement learning-based incentive mechanism is designed to encourage users to participate in sensing tasks. Finally, simulation results and security analysis demonstrate that the proposed scheme can effectively improve the utilities of users, ensure the security of the crowdsensing process, and protect the privacy of users.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4765-4780"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745923/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Application (App)-assisted mobile edge crowd- sensing is a promising paradigm, in which Apps are in charge of tagging the location of the sensing tasks as point-of-interest (PoI) to assist the platform in recruiting users to participate in the sensing tasks. However, there exist potential security, incentive, and privacy threats for App-assisted mobile edge crowdsensing (AMECS) due to the presence of malicious Apps, the low-quality shared sensing data, and the vulnerability of wireless communication. Therefore, we propose a differential privacy-based incentive (DPI) scheme for AMECS to provide secure and efficient crowdsensing services while protecting users’ privacy. Specifically, we first propose an App quality management mechanism to correlate the behavior of each App with its quality and then select reliable Apps based on quality thresholds to assist the platform in recruiting users. With the designed mechanism, we further present an auction game-based incentive mechanism to encourage Apps to mark the location of the sensing tasks as PoI. To protect the privacy of users, a privacy-preserving sensing data sharing algorithm is devised based on differential privacy. Further, given the difficulty of obtaining accurate network parameters in practice, a reinforcement learning-based incentive mechanism is designed to encourage users to participate in sensing tasks. Finally, simulation results and security analysis demonstrate that the proposed scheme can effectively improve the utilities of users, ensure the security of the crowdsensing process, and protect the privacy of users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
期刊最新文献
Table of Contents IEEE/ACM Transactions on Networking Information for Authors IEEE/ACM Transactions on Networking Society Information IEEE/ACM Transactions on Networking Publication Information FPCA: Parasitic Coding Authentication for UAVs by FM Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1