A Review on the Application of Superalloys Composition, Microstructure, Processing, and Performance via Machine Learning

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY JOM Pub Date : 2024-10-10 DOI:10.1007/s11837-024-06922-7
Junhui Zhang, Haiyan Gao, Yahui Liu, Jun Wang
{"title":"A Review on the Application of Superalloys Composition, Microstructure, Processing, and Performance via Machine Learning","authors":"Junhui Zhang,&nbsp;Haiyan Gao,&nbsp;Yahui Liu,&nbsp;Jun Wang","doi":"10.1007/s11837-024-06922-7","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of revolutionary advances in artificial intelligence (AI) has sparked significant interest among researchers across a spectrum of disciplines. Machine learning (ML) has become a potent tool for advancing materials research, offering solutions beyond traditional methods. This study discusses traditional machine learning (TML) and deep learning (DL) algorithms, providing a concise overview of commonly used ML algorithms in materials research. It also examines the general workflow of ML applications in superalloys, focusing on key aspects such as data preparation, feature engineering, model selection, and optimization, offering insights into the ML modeling process. From the perspective of the materials tetrahedron, this review explores ML applications in the research and development of superalloy composition, microstructure, processing, and performance. It highlights the use of advanced ML models to predict material properties, optimize alloy compositions and microstructure, and enhance manufacturing processes. It covers the use of advanced ML models and discusses the prospects of ML in superalloy research, highlighting its transformative potential in alloy material science.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 1","pages":"106 - 124"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06922-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of revolutionary advances in artificial intelligence (AI) has sparked significant interest among researchers across a spectrum of disciplines. Machine learning (ML) has become a potent tool for advancing materials research, offering solutions beyond traditional methods. This study discusses traditional machine learning (TML) and deep learning (DL) algorithms, providing a concise overview of commonly used ML algorithms in materials research. It also examines the general workflow of ML applications in superalloys, focusing on key aspects such as data preparation, feature engineering, model selection, and optimization, offering insights into the ML modeling process. From the perspective of the materials tetrahedron, this review explores ML applications in the research and development of superalloy composition, microstructure, processing, and performance. It highlights the use of advanced ML models to predict material properties, optimize alloy compositions and microstructure, and enhance manufacturing processes. It covers the use of advanced ML models and discusses the prospects of ML in superalloy research, highlighting its transformative potential in alloy material science.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超级合金成分、微观结构、加工和性能的机器学习应用综述
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
期刊最新文献
Study on High-Performance Gear Fatigue Life Prediction Method Based on Deep Learning Theories From Discussions to Decisions: An Overview of TMS Events at MS&T24 In the Final Analysis TMS Members Gain Valuable Experience at 2024 Emerging Leaders Alliance Program Melting Before Our Eyes: A Materials Art Mystery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1