Graphene Oxide as a Highly Efficient and Reusable Adsorbent for Simultaneous Removal of Parabens: Optimization by Response Surface Methodology, Adsorption Isotherms and Reusability Studies

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-12-19 DOI:10.1007/s10450-024-00581-5
Elif Öztürk Er
{"title":"Graphene Oxide as a Highly Efficient and Reusable Adsorbent for Simultaneous Removal of Parabens: Optimization by Response Surface Methodology, Adsorption Isotherms and Reusability Studies","authors":"Elif Öztürk Er","doi":"10.1007/s10450-024-00581-5","DOIUrl":null,"url":null,"abstract":"<div><p>Paraben contamination in aquatic systems, primarily from personal care products, pharmaceuticals and industrial effluents, is an increasing environmental concern due to their widespread use as preservatives. The removal of parabens through conventional wastewater treatment processes is challenging and requires the development of innovative water treatment methods. In this study, graphene oxide nanoflakes were produced by Improved Hummers’ method and their adsorption characteristics were investigated for simultaneous removal of five parabens. Fourier transform infrared spectroscopy, Raman Spectroscopy, X-Ray Powder Diffraction, Scanning Electron Microscope and Transmission Electron Microscope were used and the nanoflakes were successfully characterized. A chromatographic method was developed for the simultaneous quantification of parabens. Process optimization for overall removal efficiency of parabens was achieved using Response Surface Methodology by a multiple response function. Nonlinear regression was used to fit the equilibrium data and the Freundlich model described the adsorption isotherm data accurately with R<sup>2</sup> values between 0.9807 and 0.9957. Factors such as mass of adsorbent, pH of solution and their interaction have the most significant impact on the adsorption process, while contact time shows low significance on the response. The adsorption behaviors of parabens were closely correlated with their hydrophobicity. Along with hydrophobic interactions, other mechanisms such as π–π stacking, hydrogen bonding and electrostatic forces, likely played significant role in the strong adsorption of parabens onto the GO surface. The reusability experiment showed that graphene oxide nanoflakes had a high potential present as a reusable adsorbent for the removal of parabens.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00581-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Paraben contamination in aquatic systems, primarily from personal care products, pharmaceuticals and industrial effluents, is an increasing environmental concern due to their widespread use as preservatives. The removal of parabens through conventional wastewater treatment processes is challenging and requires the development of innovative water treatment methods. In this study, graphene oxide nanoflakes were produced by Improved Hummers’ method and their adsorption characteristics were investigated for simultaneous removal of five parabens. Fourier transform infrared spectroscopy, Raman Spectroscopy, X-Ray Powder Diffraction, Scanning Electron Microscope and Transmission Electron Microscope were used and the nanoflakes were successfully characterized. A chromatographic method was developed for the simultaneous quantification of parabens. Process optimization for overall removal efficiency of parabens was achieved using Response Surface Methodology by a multiple response function. Nonlinear regression was used to fit the equilibrium data and the Freundlich model described the adsorption isotherm data accurately with R2 values between 0.9807 and 0.9957. Factors such as mass of adsorbent, pH of solution and their interaction have the most significant impact on the adsorption process, while contact time shows low significance on the response. The adsorption behaviors of parabens were closely correlated with their hydrophobicity. Along with hydrophobic interactions, other mechanisms such as π–π stacking, hydrogen bonding and electrostatic forces, likely played significant role in the strong adsorption of parabens onto the GO surface. The reusability experiment showed that graphene oxide nanoflakes had a high potential present as a reusable adsorbent for the removal of parabens.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Graphene Oxide as a Highly Efficient and Reusable Adsorbent for Simultaneous Removal of Parabens: Optimization by Response Surface Methodology, Adsorption Isotherms and Reusability Studies The effect of double-doped (B, N) on graphene’s N2O4 gas adsorption performance: an ab initio study Enhanced rGO/ZnO/Chitosan Nanozyme Photocatalytic Technology for Efficient Degradation of Diazinon Pesticide Contaminated Water Modelling combined diffusion and surface resistances in adsorbent particles: zero length column for spherical and slab geometries Hierarchically porous composites containing mining tailings-based geopolymer and zeolite 13X: application for carbon dioxide sequestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1