Dependence of the Concentrations of Culturable Microorganisms and Total Protein on Meteorological Conditions in the Novosibirsk Surroundings

IF 0.9 Q4 OPTICS Atmospheric and Oceanic Optics Pub Date : 2024-12-19 DOI:10.1134/S1024856024700866
A. S. Safatov, N. A. Lapteva, S. E. Ol’kin, I. S. Andreeva, G. A. Buryak, M. E. Rebus, I. K. Reznikova, T. Y. Alikina, O. A. Baturina, M. R. Kabilov
{"title":"Dependence of the Concentrations of Culturable Microorganisms and Total Protein on Meteorological Conditions in the Novosibirsk Surroundings","authors":"A. S. Safatov,&nbsp;N. A. Lapteva,&nbsp;S. E. Ol’kin,&nbsp;I. S. Andreeva,&nbsp;G. A. Buryak,&nbsp;M. E. Rebus,&nbsp;I. K. Reznikova,&nbsp;T. Y. Alikina,&nbsp;O. A. Baturina,&nbsp;M. R. Kabilov","doi":"10.1134/S1024856024700866","DOIUrl":null,"url":null,"abstract":"<p>The dependence of the concentrations of cultivated microorganisms and total protein on meteorological parameters (wind direction and speed, solar radiation, temperature, atmospheric pressure, relative and absolute humidity) is studied based on three years measurements. Sampling was carried out at the site of the State Scientific Center of Virology and Biotechnology “Vector” of Rospotrebnadzor, Koltsovo, Novosibirsk region, with simultaneous recording of weather conditions. The concentration of total protein was determined by the fluorescence method of a protein binding reagent, and the concentration of cultivated microorganisms was determined by standard cultural methods. Weather parameters were received from a weather station located near the sampling site. The analysis of the data shows that the concentrations of biological components in aerosol increase with the average temperature, absolute humidity, and illumination during sampling and decrease with an increase in the average relative humidity, wind speed, and atmospheric pressure.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"637 - 643"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dependence of the concentrations of cultivated microorganisms and total protein on meteorological parameters (wind direction and speed, solar radiation, temperature, atmospheric pressure, relative and absolute humidity) is studied based on three years measurements. Sampling was carried out at the site of the State Scientific Center of Virology and Biotechnology “Vector” of Rospotrebnadzor, Koltsovo, Novosibirsk region, with simultaneous recording of weather conditions. The concentration of total protein was determined by the fluorescence method of a protein binding reagent, and the concentration of cultivated microorganisms was determined by standard cultural methods. Weather parameters were received from a weather station located near the sampling site. The analysis of the data shows that the concentrations of biological components in aerosol increase with the average temperature, absolute humidity, and illumination during sampling and decrease with an increase in the average relative humidity, wind speed, and atmospheric pressure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新西伯利亚地区可培养微生物和总蛋白浓度与气象条件的关系
根据三年的测量结果,研究了培养微生物和总蛋白质的浓度与气象参数(风向和风速、太阳辐射、温度、大气压力、相对湿度和绝对湿度)的关系。采样工作在新西伯利亚州科尔索沃市 Rospotrebnadzor 的 "Vector "病毒学和生物技术国家科学中心进行,并同时记录了天气条件。总蛋白质的浓度是用蛋白质结合试剂的荧光法测定的,培养微生物的浓度是用标准培养法测定的。气象参数来自采样点附近的气象站。数据分析显示,气溶胶中生物成分的浓度随着采样期间平均温度、绝对湿度和光照度的增加而增加,随着平均相对湿度、风速和气压的增加而减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
期刊最新文献
Determination of Atmospheric Turbulence Type from Operational Meteorological Measurements Vibrational Energy Levels for Sulfur Dioxide Isotopologues Activity of High Cyclones above Erebus Volcano According to ERA5 Reanalysis Data Two-Pulse Laser Fragmentation/Laser-Induced Fluorescence of Organophosphate Aerosol Study of the Wildfire Effect on Local Atmospheric Parameters using Remote Sensing Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1