Enhancement of satellite images based on CLAHE and augmented elk herd optimizer

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-12-20 DOI:10.1007/s10462-024-11022-8
Malik Braik, Mohammed Azmi Al-Betar, Mohammed A. Mahdi, Mohammed Al-Shalabi, Shahanawaj Ahamad, Sawsan A. Saad
{"title":"Enhancement of satellite images based on CLAHE and augmented elk herd optimizer","authors":"Malik Braik,&nbsp;Mohammed Azmi Al-Betar,&nbsp;Mohammed A. Mahdi,&nbsp;Mohammed Al-Shalabi,&nbsp;Shahanawaj Ahamad,&nbsp;Sawsan A. Saad","doi":"10.1007/s10462-024-11022-8","DOIUrl":null,"url":null,"abstract":"<div><p>Satellite images often have very narrow brightness value ranges, so it is necessary to enhance the contrast and brightness, maintain the quality of visual information, and preserve pertinent details in the images before conducting additional analysis. This is because improving the brightness and contrast of images is crucial to image processing and analysis as it makes it easier for people to identify and comprehend the images. The Incomplete Beta Function (IBF) is a popular transformation function for Image Contrast Enhancement (ICE). Nevertheless, IBF has modest efficiency in parameter selection, a small set of adjustable parameters for stretching regions with high or low gray levels, and image enhancement is almost ineffective with stretching at either end. Meta-heuristic algorithms have been utilized efficiently and effectively over the past few decades to solve complicated image processing problems. This paper presents an Augmented version of the Elk Herd Optimizer (AEHO) combined with other traditional ICE techniques to improve edge details, entropy, local contrast, and local brightness of low-contrast natural and satellite images. The AEHO method employs a multi-stage strategic procedure, where its mathematical model undergoes several enhancements before being applied to ICE to allow for further exploration and exploitation of its features. This method uses a pre-established fitness criterion for the purpose of optimizing a set of parameters to rework a well-known transformation function and an effective assessment technique as an objective standard for this purpose. In the proposed image enhancement model, contrast limited adaptive histogram equalization was first applied as a prior step to ameliorate the color intensity. Then, the optimal IBF’s parameters for ICE were adaptively determined using AEHO. After that, bilateral gamma correction was used to improve the visual quality of images without sacrificing edge details or natural color quality. The proposed AEHO-based image enhancement model is tested on natural scenes, certain standard images, and publicly available satellite images. In addition to other five techniques built on based on pre-existing meta-heuristics, the performance of the proposed method was compared against other well-known state-of-the-art image enhancement algorithms. The objective evaluation of the enhancement algorithms was achieved utilizing a variety of full-reference, no-reference, and pertinent performance evaluation norms. The experimental findings illustrated that the proposed image enhancement method can successfully outperform several other algorithms that employed the same image enhancement model as AEHO in addition to other conventional image enhancement methods included for comparison. The results on ten natural and satellite color images showed that the presented method performs better than all other comparative methods in the corresponding evaluation criteria in terms of average peak signal-to-noise ratio, average universal quality index, average structural contrast-quality index, and average values of discrete entropy results, which are more than 32.30, 94.0%, 0.98.9%, and 7.4, respectively. In a nutshell, AEHO can be an efficient method that can be used to tackle several image processing problems.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11022-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11022-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite images often have very narrow brightness value ranges, so it is necessary to enhance the contrast and brightness, maintain the quality of visual information, and preserve pertinent details in the images before conducting additional analysis. This is because improving the brightness and contrast of images is crucial to image processing and analysis as it makes it easier for people to identify and comprehend the images. The Incomplete Beta Function (IBF) is a popular transformation function for Image Contrast Enhancement (ICE). Nevertheless, IBF has modest efficiency in parameter selection, a small set of adjustable parameters for stretching regions with high or low gray levels, and image enhancement is almost ineffective with stretching at either end. Meta-heuristic algorithms have been utilized efficiently and effectively over the past few decades to solve complicated image processing problems. This paper presents an Augmented version of the Elk Herd Optimizer (AEHO) combined with other traditional ICE techniques to improve edge details, entropy, local contrast, and local brightness of low-contrast natural and satellite images. The AEHO method employs a multi-stage strategic procedure, where its mathematical model undergoes several enhancements before being applied to ICE to allow for further exploration and exploitation of its features. This method uses a pre-established fitness criterion for the purpose of optimizing a set of parameters to rework a well-known transformation function and an effective assessment technique as an objective standard for this purpose. In the proposed image enhancement model, contrast limited adaptive histogram equalization was first applied as a prior step to ameliorate the color intensity. Then, the optimal IBF’s parameters for ICE were adaptively determined using AEHO. After that, bilateral gamma correction was used to improve the visual quality of images without sacrificing edge details or natural color quality. The proposed AEHO-based image enhancement model is tested on natural scenes, certain standard images, and publicly available satellite images. In addition to other five techniques built on based on pre-existing meta-heuristics, the performance of the proposed method was compared against other well-known state-of-the-art image enhancement algorithms. The objective evaluation of the enhancement algorithms was achieved utilizing a variety of full-reference, no-reference, and pertinent performance evaluation norms. The experimental findings illustrated that the proposed image enhancement method can successfully outperform several other algorithms that employed the same image enhancement model as AEHO in addition to other conventional image enhancement methods included for comparison. The results on ten natural and satellite color images showed that the presented method performs better than all other comparative methods in the corresponding evaluation criteria in terms of average peak signal-to-noise ratio, average universal quality index, average structural contrast-quality index, and average values of discrete entropy results, which are more than 32.30, 94.0%, 0.98.9%, and 7.4, respectively. In a nutshell, AEHO can be an efficient method that can be used to tackle several image processing problems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CLAHE 和增强型麋鹿群优化器的卫星图像增强技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Artificial intelligence for geometry-based feature extraction, analysis and synthesis in artistic images: a survey How the internet of things technology improves agricultural efficiency Models of symbol emergence in communication: a conceptual review and a guide for avoiding local minima Digital phenotypes and digital biomarkers for health and diseases: a systematic review of machine learning approaches utilizing passive non-invasive signals collected via wearable devices and smartphones A survey on deep learning-based automated essay scoring and feedback generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1