Predictor-based neural network control for unmanned aerial vehicles with input quantization: design and application

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-12-20 DOI:10.1007/s10462-024-11054-0
Di Wu
{"title":"Predictor-based neural network control for unmanned aerial vehicles with input quantization: design and application","authors":"Di Wu","doi":"10.1007/s10462-024-11054-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, I design a predictor-based neural network (NN) controller for unmanned aerial vehicles (UAVs) with input quantization to address the trajectory tracking problem in the presence of time-varying disturbances caused by aerodynamics and external environment. The NN with a state predictor (SP) is employed in the controller design to improve transient performance without high-frequency oscillations and address the problem of instability caused by the time-varying disturbances. Additionally, the prediction errors from the SP are used to update the learning rate of the NN, resulting in smoother and faster learning responses. Furthermore, a hysteresis quantizer is employed to discretize signals and reduce the transmission burden on digital hardware, which can enhance the suitability of the system for practical implementation. Based on the Lyapunov method, the closed-loop system of the UAV achieves input-to-state stability (ISS). Finally, to validate and assess the performance and effectiveness of our proposed control method, I present and analyze both simulation results and experimental results from real-world applications.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11054-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11054-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, I design a predictor-based neural network (NN) controller for unmanned aerial vehicles (UAVs) with input quantization to address the trajectory tracking problem in the presence of time-varying disturbances caused by aerodynamics and external environment. The NN with a state predictor (SP) is employed in the controller design to improve transient performance without high-frequency oscillations and address the problem of instability caused by the time-varying disturbances. Additionally, the prediction errors from the SP are used to update the learning rate of the NN, resulting in smoother and faster learning responses. Furthermore, a hysteresis quantizer is employed to discretize signals and reduce the transmission burden on digital hardware, which can enhance the suitability of the system for practical implementation. Based on the Lyapunov method, the closed-loop system of the UAV achieves input-to-state stability (ISS). Finally, to validate and assess the performance and effectiveness of our proposed control method, I present and analyze both simulation results and experimental results from real-world applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在本文中,我设计了一种基于预测器的神经网络(NN)控制器,用于无人驾驶飞行器(UAV)的输入量化,以解决存在由空气动力学和外部环境引起的时变干扰时的轨迹跟踪问题。在控制器设计中采用了带有状态预测器(SP)的 NN,以改善无高频振荡的瞬态性能,并解决由时变干扰引起的不稳定性问题。此外,SP 的预测误差被用于更新 NN 的学习率,从而获得更平滑、更快速的学习响应。此外,还采用了滞后量化器对信号进行离散化处理,减轻了数字硬件的传输负担,从而提高了系统在实际应用中的适用性。基于 Lyapunov 方法,无人机闭环系统实现了输入到状态稳定性(ISS)。最后,为了验证和评估我们提出的控制方法的性能和有效性,我介绍并分析了仿真结果和实际应用的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Artificial intelligence for geometry-based feature extraction, analysis and synthesis in artistic images: a survey How the internet of things technology improves agricultural efficiency Models of symbol emergence in communication: a conceptual review and a guide for avoiding local minima Digital phenotypes and digital biomarkers for health and diseases: a systematic review of machine learning approaches utilizing passive non-invasive signals collected via wearable devices and smartphones A survey on deep learning-based automated essay scoring and feedback generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1