Improved artificial rabbits algorithm for global optimization and multi-level thresholding color image segmentation

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-12-20 DOI:10.1007/s10462-024-11035-3
Heming Jia, Yuanyuan Su, Honghua Rao, Muzi Liang, Laith Abualigah, Chibiao Liu, Xiaoguo Chen
{"title":"Improved artificial rabbits algorithm for global optimization and multi-level thresholding color image segmentation","authors":"Heming Jia,&nbsp;Yuanyuan Su,&nbsp;Honghua Rao,&nbsp;Muzi Liang,&nbsp;Laith Abualigah,&nbsp;Chibiao Liu,&nbsp;Xiaoguo Chen","doi":"10.1007/s10462-024-11035-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Artificial Rabbits Optimization Algorithm is a metaheuristic optimization algorithm proposed in 2022. This algorithm has weak local search ability, which can easily lead to the algorithm falling into local optimal solutions. To overcome these limitations, this paper introduces an Improved Artificial Rabbits Optimization Algorithm (IARO) and demonstrates its effectiveness in multi-level threshold color image segmentation using the Otsu method. Initially, we apply a center-driven strategy to enhance exploration by updating the rabbit’s position during the random hiding phase. Additionally, when the algorithm stalls, a Gaussian Randomized Wandering (GRW) strategy is utilized to enable the algorithm to escape local optima and improve convergence accuracy. The performance of the IARO algorithm is evaluated using 23 standard benchmark functions and CEC2020 benchmark functions, and compared with nine other algorithms. Experimental results indicate that IARO excels in global optimization and demonstrates notable robustness. To assess its effectiveness in multi-threshold color image segmentation, the algorithm is tested on classical Berkeley images. Evaluation metrics including execution time, Peak Signal-to-Noise Ratio (PSNR), Feature Similarity (FSIM), Structural Similarity (SSIM), Boundary Displacement Error (BDE), The Probabilistic Rand Index (PRI), Variation of Information (VOI) and average fitness value are used to measure segmentation quality. The results reveal that IARO achieves high accuracy and fast segmentation speed, validating its efficiency and practical utility in real-world applications.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11035-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11035-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Artificial Rabbits Optimization Algorithm is a metaheuristic optimization algorithm proposed in 2022. This algorithm has weak local search ability, which can easily lead to the algorithm falling into local optimal solutions. To overcome these limitations, this paper introduces an Improved Artificial Rabbits Optimization Algorithm (IARO) and demonstrates its effectiveness in multi-level threshold color image segmentation using the Otsu method. Initially, we apply a center-driven strategy to enhance exploration by updating the rabbit’s position during the random hiding phase. Additionally, when the algorithm stalls, a Gaussian Randomized Wandering (GRW) strategy is utilized to enable the algorithm to escape local optima and improve convergence accuracy. The performance of the IARO algorithm is evaluated using 23 standard benchmark functions and CEC2020 benchmark functions, and compared with nine other algorithms. Experimental results indicate that IARO excels in global optimization and demonstrates notable robustness. To assess its effectiveness in multi-threshold color image segmentation, the algorithm is tested on classical Berkeley images. Evaluation metrics including execution time, Peak Signal-to-Noise Ratio (PSNR), Feature Similarity (FSIM), Structural Similarity (SSIM), Boundary Displacement Error (BDE), The Probabilistic Rand Index (PRI), Variation of Information (VOI) and average fitness value are used to measure segmentation quality. The results reveal that IARO achieves high accuracy and fast segmentation speed, validating its efficiency and practical utility in real-world applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全局优化和多级阈值彩色图像分割的改进型人工兔算法
人工兔子优化算法是 2022 年提出的一种元启发式优化算法。该算法的局部搜索能力较弱,容易导致算法陷入局部最优解。为了克服这些局限性,本文介绍了一种改进的人工兔子优化算法(IARO),并演示了其在使用大津方法进行多级阈值彩色图像分割中的有效性。最初,我们采用了中心驱动策略,通过在随机隐藏阶段更新兔子的位置来加强探索。此外,当算法停滞时,我们采用高斯随机游走(GRW)策略,使算法摆脱局部最优状态,提高收敛精度。利用 23 个标准基准函数和 CEC2020 基准函数对 IARO 算法的性能进行了评估,并与其他九种算法进行了比较。实验结果表明,IARO 在全局优化方面表现出色,并具有显著的鲁棒性。为了评估其在多阈值彩色图像分割中的有效性,该算法在经典的伯克利图像上进行了测试。评估指标包括执行时间、峰值信噪比 (PSNR)、特征相似性 (FSIM)、结构相似性 (SSIM)、边界位移误差 (BDE)、概率兰德指数 (PRI)、信息变异 (VOI) 和平均适配值,用于衡量分割质量。结果表明,IARO 实现了较高的准确率和较快的分割速度,验证了其在实际应用中的效率和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Artificial intelligence for geometry-based feature extraction, analysis and synthesis in artistic images: a survey How the internet of things technology improves agricultural efficiency Models of symbol emergence in communication: a conceptual review and a guide for avoiding local minima Digital phenotypes and digital biomarkers for health and diseases: a systematic review of machine learning approaches utilizing passive non-invasive signals collected via wearable devices and smartphones A survey on deep learning-based automated essay scoring and feedback generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1