Enhanced PM2.5 prediction in Delhi using a novel optimized STL-CNN-BILSTM-AM hybrid model

IF 1.1 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Asian Journal of Atmospheric Environment Pub Date : 2024-12-20 DOI:10.1007/s44273-024-00048-7
T. Sreenivasulu, G. Mokesh Rayalu
{"title":"Enhanced PM2.5 prediction in Delhi using a novel optimized STL-CNN-BILSTM-AM hybrid model","authors":"T. Sreenivasulu,&nbsp;G. Mokesh Rayalu","doi":"10.1007/s44273-024-00048-7","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate air pollution predictions in urban areas facilitate the implementation of efficient actions to control air pollution and the formulation of strategies to mitigate contamination. This includes establishing an early warning system to notify the public. Creating precise estimates for PM2.5 air pollutants in large cities is a challenging task because of the numerous relevant factors and quick fluctuations. This study introduces a novel hybrid model named STL-CNN-BILSTM-AM. It combines the seasonal-trend decomposition method with LOESS (STL) to simplify learning tasks and increase prediction accuracy for complex, nonlinear time-series data. Convolutional neural networks (CNNs) extract features from decomposed components of PM2.5 and other feature variables, such as pollutants and meteorological variables. Bidirectional long-short-term memory (BILSTM) uses these features to extract temporal relationships, enabling the forecasting of daily PM2.5 levels at four locations in Delhi. This hybrid model uses attention mechanisms to extract the most significant information, as well as Bayesian optimization to tune the hyperparameters. The suggested model greatly improved performance in all four regions used in this study, as evidenced by the findings. We compared it with the CNN-BILSTM, BILSTM, LSTM, and CNN models, and the suggested model outperformed the state-of-the-art models by utilizing STL decomposition components and other features. The overall results show that the STL-CNN-BILSTM-AM is better at predicting air quality, especially the concentration of PM2.5 in cities when the data has a high seasonal trend and is complex.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":"18 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-024-00048-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-024-00048-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate air pollution predictions in urban areas facilitate the implementation of efficient actions to control air pollution and the formulation of strategies to mitigate contamination. This includes establishing an early warning system to notify the public. Creating precise estimates for PM2.5 air pollutants in large cities is a challenging task because of the numerous relevant factors and quick fluctuations. This study introduces a novel hybrid model named STL-CNN-BILSTM-AM. It combines the seasonal-trend decomposition method with LOESS (STL) to simplify learning tasks and increase prediction accuracy for complex, nonlinear time-series data. Convolutional neural networks (CNNs) extract features from decomposed components of PM2.5 and other feature variables, such as pollutants and meteorological variables. Bidirectional long-short-term memory (BILSTM) uses these features to extract temporal relationships, enabling the forecasting of daily PM2.5 levels at four locations in Delhi. This hybrid model uses attention mechanisms to extract the most significant information, as well as Bayesian optimization to tune the hyperparameters. The suggested model greatly improved performance in all four regions used in this study, as evidenced by the findings. We compared it with the CNN-BILSTM, BILSTM, LSTM, and CNN models, and the suggested model outperformed the state-of-the-art models by utilizing STL decomposition components and other features. The overall results show that the STL-CNN-BILSTM-AM is better at predicting air quality, especially the concentration of PM2.5 in cities when the data has a high seasonal trend and is complex.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Atmospheric Environment
Asian Journal of Atmospheric Environment METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.80
自引率
6.70%
发文量
22
审稿时长
21 weeks
期刊最新文献
Shapes in submicron ammonium sulfate particles after long-term exposure on tree leaves Enhanced PM2.5 prediction in Delhi using a novel optimized STL-CNN-BILSTM-AM hybrid model Microbiostatic effect of indoor air quality management with low-concentration gaseous chlorine dioxide on fungal growth Characteristic of PM2.5 concentration and source apportionment during winter in Seosan, Korea A case study on the effect of contaminated inlet tubes on the accuracy of mid-cost optical particle counters for the ambient air monitoring of fine particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1