Velocity dependence of permeability evolution and the effect of fluid pressure heterogeneity on frictional stability of longmaxi shale

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2024-12-20 DOI:10.1007/s10064-024-04052-7
Chengxing Zhao, Jianfeng Liu, Jinbing Wei, Hangyu Dai, Chunyu Gao, Huining Xu, Wen Zhong
{"title":"Velocity dependence of permeability evolution and the effect of fluid pressure heterogeneity on frictional stability of longmaxi shale","authors":"Chengxing Zhao,&nbsp;Jianfeng Liu,&nbsp;Jinbing Wei,&nbsp;Hangyu Dai,&nbsp;Chunyu Gao,&nbsp;Huining Xu,&nbsp;Wen Zhong","doi":"10.1007/s10064-024-04052-7","DOIUrl":null,"url":null,"abstract":"<div><p>The permeability evolution of faults and fractures is closely related to variations in slip velocity, while changes in high-pressure fluid distribution also affect the frictional stability. Here we conducted friction experiments on Longmaxi shale sawcut fractures at constant and step velocities to analyze the friction-permeability evolution and the velocity dependence of permeability. We then used COMSOL multiphysics software to recover the fluid pressure distribution along shale fractures under different conditions, focusing on the effects of fluid pressure heterogeneity on the frictional stability of Longmaxi shale. The results show that the permeability of Longmaxi shale sawcut fractures exhibits an overall enhancement with slip velocity switching. However, the cumulative effect of switching slip velocity on permeability evolution is relatively weak, and permeability still decreases with shear displacement. The permeability response parameter <i>λ</i> increases overall as the friction state parameter (<i>a</i>-<i>b</i>) decreases, exhibiting regular changes with injection pressure, normal stress, and effective normal stress. Additionally, fluid pressure heterogeneity is influenced by both injection pressure and normal stress. Increasing injection pressure amplifies the heterogeneity of fluid pressure distribution, leading to a more significant heterogeneous friction phenomenon, forcing the Longmaxi shale to exhibit velocity-weakening behavior. When studying the frictional stability of various types of rocks under fluid injection, it is essential to analyze the actual distribution of fluid pressure to reveal the influence of fluid injection comprehensively.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04052-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The permeability evolution of faults and fractures is closely related to variations in slip velocity, while changes in high-pressure fluid distribution also affect the frictional stability. Here we conducted friction experiments on Longmaxi shale sawcut fractures at constant and step velocities to analyze the friction-permeability evolution and the velocity dependence of permeability. We then used COMSOL multiphysics software to recover the fluid pressure distribution along shale fractures under different conditions, focusing on the effects of fluid pressure heterogeneity on the frictional stability of Longmaxi shale. The results show that the permeability of Longmaxi shale sawcut fractures exhibits an overall enhancement with slip velocity switching. However, the cumulative effect of switching slip velocity on permeability evolution is relatively weak, and permeability still decreases with shear displacement. The permeability response parameter λ increases overall as the friction state parameter (a-b) decreases, exhibiting regular changes with injection pressure, normal stress, and effective normal stress. Additionally, fluid pressure heterogeneity is influenced by both injection pressure and normal stress. Increasing injection pressure amplifies the heterogeneity of fluid pressure distribution, leading to a more significant heterogeneous friction phenomenon, forcing the Longmaxi shale to exhibit velocity-weakening behavior. When studying the frictional stability of various types of rocks under fluid injection, it is essential to analyze the actual distribution of fluid pressure to reveal the influence of fluid injection comprehensively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
渗透率演变的速度依赖性及流体压力异质性对长马溪页岩摩擦稳定性的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Impact of plasticity characteristics on wet-dry response of fiber reinforced clays The modified Grasselli's morphology parameter and its contribution to shear strength of rock joints Improving the geotechnical properties of medium expansive clay using various gradations and percentages of glass Research on gas tunnel prediction in Central Sichuan using energy valley optimizer and support vector machine Moisture-absorbing expansion and cracking characteristics of central Sichuan red-bed mudstone based on digital speckle correlation method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1