Gold Nanoparticles Stabilized by δ-Cyclodextrin in Aqueous Media: Characterization and Evaluation of their Catalytic Properties in the Reduction of 4-Nitrophenol

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-10-04 DOI:10.1002/cnma.202400246
Ernesto de la Torre, Sébastien Noël, Antonio Madureira, Kasper Hornstrup Hansen, Andreas Erichsen, Anne Ponchel, Sophie R. Beeren, Éric Monflier, Bastien Léger
{"title":"Gold Nanoparticles Stabilized by δ-Cyclodextrin in Aqueous Media: Characterization and Evaluation of their Catalytic Properties in the Reduction of 4-Nitrophenol","authors":"Ernesto de la Torre,&nbsp;Sébastien Noël,&nbsp;Antonio Madureira,&nbsp;Kasper Hornstrup Hansen,&nbsp;Andreas Erichsen,&nbsp;Anne Ponchel,&nbsp;Sophie R. Beeren,&nbsp;Éric Monflier,&nbsp;Bastien Léger","doi":"10.1002/cnma.202400246","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of gold nanoparticles stabilized by cyclomaltononaose (δ-CD) in aqueous phase was performed. Protection of the gold nanoparticles by standard native cyclodextrins such as α-CD, β-CD and γ-CD has also been considered for comparison. All of these colloidal suspensions were fully characterized by FT-IR, DLS, UV-Vis spectroscopy, TEM, XPS and also NMR experiments. Finally, their catalytic activity was evaluated in the reduction of 4-nitrophenol to 4-aminophenol in the presence of an excess of sodium borohydride. Gold nanoparticles stabilized by δ-CD presented good activity and exhibited better long-term stability. This study highlighted the fact that the obtention of the best catalytic activity corresponds to not only a compromise between the size of the nanoparticles and the interaction of the substrate with the metal nanoparticles surface, but also the supramolecular interactions between the substrate and the cyclodextrin.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202400246","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400246","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of gold nanoparticles stabilized by cyclomaltononaose (δ-CD) in aqueous phase was performed. Protection of the gold nanoparticles by standard native cyclodextrins such as α-CD, β-CD and γ-CD has also been considered for comparison. All of these colloidal suspensions were fully characterized by FT-IR, DLS, UV-Vis spectroscopy, TEM, XPS and also NMR experiments. Finally, their catalytic activity was evaluated in the reduction of 4-nitrophenol to 4-aminophenol in the presence of an excess of sodium borohydride. Gold nanoparticles stabilized by δ-CD presented good activity and exhibited better long-term stability. This study highlighted the fact that the obtention of the best catalytic activity corresponds to not only a compromise between the size of the nanoparticles and the interaction of the substrate with the metal nanoparticles surface, but also the supramolecular interactions between the substrate and the cyclodextrin.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水介质中δ-环糊精稳定金纳米颗粒的表征及其对4-硝基苯酚还原的催化性能评价
采用环丙二醇糖(δ-CD)在水相中稳定制备了金纳米颗粒。还比较了α-CD、β-CD和γ-CD等标准天然环糊精对金纳米颗粒的保护作用。通过FT-IR、DLS、UV-Vis、TEM、XPS和NMR等实验对所制备的胶体悬浮液进行了表征。最后,在过量硼氢化钠存在下,评价了它们在将4-硝基苯酚还原为4-氨基苯酚中的催化活性。δ-CD稳定的金纳米颗粒具有良好的活性和较好的长期稳定性。该研究表明,最佳催化活性的存在不仅与纳米颗粒的大小和底物与金属纳米颗粒表面的相互作用有关,而且与底物与环糊精之间的超分子相互作用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Trichosanthes Cucumerina Derived Activated Carbon: The Potential Electrode material for High Energy Symmetric Supercapacitor (ChemNanoMat 12/2024) Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Facile Fabrication of LaFeO3 Supported Pd Nanoparticles as Highly Effective Heterogeneous Catalyst for Suzuki–Miyaura Coupling Reaction Effect of Electric Field on Carbon Encapsulation and Catalytic Activity of Pd for Efficient Formic Acid Decomposition Two-Dimensional Metal Covalent Organic Polymers with Dirhodium(II) Photoreduction Centers for Efficient Nitrogen Fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1