Impact of Brownian motion and thermophoresis in magnetohydrodynamic dissipative: Radiative flow of chemically reactive nanoliquid thin films on an unsteady expandable sheet in a composite media

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-10-07 DOI:10.1002/htj.23203
Dulal Pal, Debranjan Chatterjee
{"title":"Impact of Brownian motion and thermophoresis in magnetohydrodynamic dissipative: Radiative flow of chemically reactive nanoliquid thin films on an unsteady expandable sheet in a composite media","authors":"Dulal Pal,&nbsp;Debranjan Chatterjee","doi":"10.1002/htj.23203","DOIUrl":null,"url":null,"abstract":"<p>This study comprehensively examines magnetohydrodynamic heat transport characteristics within a thin nanofluid film on a stretchable sheet embedded in a composite medium. By considering factors such as the unsteady nature of sheet velocity, Brownian motion, thermophoresis, thermally radiative heat, irregular heat generation/sink, chemical reactions, and dissipation due to viscous fluid, the research provides valuable insights into the variations in fluid velocity, temperature, and nanoparticles concentration. The computational solution utilizes the efficient numerical method that enables accurate predictions of system behavior under varying conditions. Notable findings include the influence of Schmidt numbers on nanoparticle concentration distribution, the opposing impact of thermophoresis parameter values, and the influence of Brownian motion and heat source/sink on temperature profiles in thin nanofluid film. Also, nanoliquid film thickness is reduced by enhancing the porous parameter values and Hartmann number values. The nanoliquid film becomes thinner when the space-dependent heat source/sink parameter is considered compared to the temperature-dependent heat source/sink coefficient. In space-dependent and temperature-dependent cases, the increase in these parameters leads to a decrease in the temperature gradient. Furthermore, it is observed that higher thermophoresis values correspond to reduced nanoparticle concentration gradient profiles. Also, enhancement in the chemical reaction values leads to an expansion in the solutal boundary region surrounding nanoparticles, and as a consequence, the concentration gradient of nanoparticles is enhanced. This research has significant potential for optimizing heat performance and advancing innovation in industrial and engineering processes.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 1","pages":"941-967"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study comprehensively examines magnetohydrodynamic heat transport characteristics within a thin nanofluid film on a stretchable sheet embedded in a composite medium. By considering factors such as the unsteady nature of sheet velocity, Brownian motion, thermophoresis, thermally radiative heat, irregular heat generation/sink, chemical reactions, and dissipation due to viscous fluid, the research provides valuable insights into the variations in fluid velocity, temperature, and nanoparticles concentration. The computational solution utilizes the efficient numerical method that enables accurate predictions of system behavior under varying conditions. Notable findings include the influence of Schmidt numbers on nanoparticle concentration distribution, the opposing impact of thermophoresis parameter values, and the influence of Brownian motion and heat source/sink on temperature profiles in thin nanofluid film. Also, nanoliquid film thickness is reduced by enhancing the porous parameter values and Hartmann number values. The nanoliquid film becomes thinner when the space-dependent heat source/sink parameter is considered compared to the temperature-dependent heat source/sink coefficient. In space-dependent and temperature-dependent cases, the increase in these parameters leads to a decrease in the temperature gradient. Furthermore, it is observed that higher thermophoresis values correspond to reduced nanoparticle concentration gradient profiles. Also, enhancement in the chemical reaction values leads to an expansion in the solutal boundary region surrounding nanoparticles, and as a consequence, the concentration gradient of nanoparticles is enhanced. This research has significant potential for optimizing heat performance and advancing innovation in industrial and engineering processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁流体耗散中布朗运动和热电泳的影响:复合介质中化学反应纳米液体薄膜在非定常可膨胀片上的辐射流动
本研究全面考察了嵌入复合介质的可拉伸薄片上的纳米流体薄膜内的磁流体动力学热传输特性。通过考虑薄片速度的非定常性、布朗运动、热电泳、热辐射热、不规则热生成/吸收、化学反应和粘性流体耗散等因素,该研究为流体速度、温度和纳米颗粒浓度的变化提供了有价值的见解。计算解决方案利用有效的数值方法,能够准确预测系统在不同条件下的行为。值得注意的发现包括施密特数对纳米颗粒浓度分布的影响,热泳参数值的相反影响,以及布朗运动和热源/汇对纳米流体薄膜温度分布的影响。通过提高孔隙参数值和哈特曼数值,可以减小纳米液膜厚度。与温度相关的热源/汇系数相比,考虑空间相关热源/汇参数时,纳米液体膜变得更薄。在空间相关和温度相关的情况下,这些参数的增加导致温度梯度的减小。此外,观察到较高的热泳值对应于降低的纳米颗粒浓度梯度曲线。此外,化学反应值的增加导致纳米颗粒周围溶质边界区域的膨胀,从而增强了纳米颗粒的浓度梯度。这项研究在优化热性能和推进工业和工程过程的创新方面具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Numerical Study on the Effect of Trapezoidal-Wave Shaped Partition on Natural Convection Flow Within a Porous Enclosure Investigation of Atomized Droplet Characteristics and Heat Transfer Performance in Minimum Quantity Lubrication Cutting Technology Implementation of a Realistic Multicell CFD Model to Investigate the Thermal Characteristics Within a Solar PV Module Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1