Shifts in Climatic Limitations on Global Vegetation Productivity Unveiled by Shapley Additive Explanation: Reduced Temperature but Increased Water Limitations

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Geophysical Research: Biogeosciences Pub Date : 2024-12-08 DOI:10.1029/2024JG008354
Jiangliu Xie, Gaofei Yin, Qiaoyun Xie, Chaoyang Wu, Wenping Yuan, Yelu Zeng, Aleixandre Verger, Adrià Descals, Iolanda Filella, Josep Peñuelas
{"title":"Shifts in Climatic Limitations on Global Vegetation Productivity Unveiled by Shapley Additive Explanation: Reduced Temperature but Increased Water Limitations","authors":"Jiangliu Xie,&nbsp;Gaofei Yin,&nbsp;Qiaoyun Xie,&nbsp;Chaoyang Wu,&nbsp;Wenping Yuan,&nbsp;Yelu Zeng,&nbsp;Aleixandre Verger,&nbsp;Adrià Descals,&nbsp;Iolanda Filella,&nbsp;Josep Peñuelas","doi":"10.1029/2024JG008354","DOIUrl":null,"url":null,"abstract":"<p>Global fluctuations in vegetation productivity are intricately tied to climatic variability, but how climate change will alter climatic limitations on productivity is unclear. Here, we used shapley additive explanation (SHAP), a novel technique based on game theory, for identifing the contributions of climatic factors to vegetation productivity. We also delineated climatic limitations on productivity and traced their temporal evolution during 1982–2018 using the SHAP values. The results identified that, in temperate, boreal, and polar zones, temperature primarily limited productivity during the early growing season, and temperature and radiation jointly limited productivity during the peack and late growing season. In contrast, water and radiation predominantly limited productivity mainly in arid and equatorial zones, respectively. We also observed an alleviated temperature but an intensified water limitations on productivity across different months. The alleviated temperature limitation was particularly notable in June for the northern hemisphere (July for the southern hemisphere), with the temperature-constrained area decreasing significantly at a rate of 2.2‰/y (1.2‰/y). In contrast, the exacerbation of water limitation was most pronounced in June (September), with the water-constrained area expanding significantly at a rate of 2.8‰/y (3.3‰/y). Our findings underscore the imperative for a more explicit incorporation of the impact of water limitation in understanding regional and global carbon dynamics under a warming climate.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008354","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Global fluctuations in vegetation productivity are intricately tied to climatic variability, but how climate change will alter climatic limitations on productivity is unclear. Here, we used shapley additive explanation (SHAP), a novel technique based on game theory, for identifing the contributions of climatic factors to vegetation productivity. We also delineated climatic limitations on productivity and traced their temporal evolution during 1982–2018 using the SHAP values. The results identified that, in temperate, boreal, and polar zones, temperature primarily limited productivity during the early growing season, and temperature and radiation jointly limited productivity during the peack and late growing season. In contrast, water and radiation predominantly limited productivity mainly in arid and equatorial zones, respectively. We also observed an alleviated temperature but an intensified water limitations on productivity across different months. The alleviated temperature limitation was particularly notable in June for the northern hemisphere (July for the southern hemisphere), with the temperature-constrained area decreasing significantly at a rate of 2.2‰/y (1.2‰/y). In contrast, the exacerbation of water limitation was most pronounced in June (September), with the water-constrained area expanding significantly at a rate of 2.8‰/y (3.3‰/y). Our findings underscore the imperative for a more explicit incorporation of the impact of water limitation in understanding regional and global carbon dynamics under a warming climate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shapley揭示的气候变化对全球植被生产力的限制:温度降低,但水限制增加
全球植被生产力的波动与气候变化有着错综复杂的关系,但气候变化将如何改变气候对生产力的限制尚不清楚。本文采用基于博弈论的shapley加性解释(SHAP)方法来确定气候因子对植被生产力的影响。我们还描述了气候对生产力的限制,并使用SHAP值追踪了1982-2018年期间生产力的时间演变。结果表明,在温带、寒带和极地地区,温度主要限制生长季早期的生产力,温度和辐射共同限制生长季高峰和后期的生产力。相反,水和辐射主要分别在干旱和赤道地区限制生产力。我们还观察到不同月份对生产力的温度限制有所缓解,但水分限制加剧。温度限制在6月(南半球7月)的缓解尤为显著,温度限制面积以2.2‰/年(1.2‰/年)的速率显著减少。6月(9月)水资源限制加剧最为明显,水资源限制面积以2.8‰/年(3.3‰/年)的速度显著扩大。我们的研究结果强调,在气候变暖的情况下,更明确地将水资源限制的影响纳入了解区域和全球碳动态的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
期刊最新文献
Thermal Adaptation of Enzyme-Mediated Processes Reduces Simulated Soil CO2 Fluxes Upon Soil Warming Spectral Induced Polarization Response of Bacteria Growth and Decay in Soil Column Experiments Controls on Lake Pelagic Primary Productivity: Formalizing the Nutrient-Color Paradigm Patterns of Carbon and Nitrogen Accumulation in Seagrass (Posidonia oceanica) Meadows of the Eastern Mediterranean Sea Seasonal Differences in Vegetation Susceptibility to Soil Drought During 2001–2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1