Nonequilibrium Dynamics at Cellular Interfaces: Insights From Simulation and Theory

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2024-12-09 DOI:10.1002/wcms.1736
Zheng Jiao, Lijuan Gao, Xueqing Jin, Jiaqi Li, Yuming Wang, Wenlong Chen, Li-Tang Yan
{"title":"Nonequilibrium Dynamics at Cellular Interfaces: Insights From Simulation and Theory","authors":"Zheng Jiao,&nbsp;Lijuan Gao,&nbsp;Xueqing Jin,&nbsp;Jiaqi Li,&nbsp;Yuming Wang,&nbsp;Wenlong Chen,&nbsp;Li-Tang Yan","doi":"10.1002/wcms.1736","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Active matters, which consume energy to exert mechanical forces, include molecular motors, synthetic nanomachines, actively propelled bacteria, and viruses. A series of unique phenomena emerge when active matters interact with cellular interfaces. Activity changes the mechanism of nanoparticle intracellular delivery, while active mechanical processes generated in the cytoskeleton play a major role in membrane protein distribution and transport. This review provides a comprehensive overview of the theoretical and simulation models used to study these nonequilibrium phenomena, offering insights into how activity enhances cellular uptake, influences membrane deformation, and governs surface transport dynamics. Furthermore, we explore the impact of membrane properties, such as fluidity and viscosity, on transport efficiency and discuss the slippage dynamics and active rotation behaviors on the membrane surface. The interplay of active particles and membranes highlights the essential role of nonequilibrium dynamics in cellular transport processes, with potential applications in drug delivery and nanotechnology. Finally, we provide an outlook highlighting the significance of deeper theoretical and simulation-based investigations to optimize active particles and understand their behavior in complex biological environments.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 6","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1736","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Active matters, which consume energy to exert mechanical forces, include molecular motors, synthetic nanomachines, actively propelled bacteria, and viruses. A series of unique phenomena emerge when active matters interact with cellular interfaces. Activity changes the mechanism of nanoparticle intracellular delivery, while active mechanical processes generated in the cytoskeleton play a major role in membrane protein distribution and transport. This review provides a comprehensive overview of the theoretical and simulation models used to study these nonequilibrium phenomena, offering insights into how activity enhances cellular uptake, influences membrane deformation, and governs surface transport dynamics. Furthermore, we explore the impact of membrane properties, such as fluidity and viscosity, on transport efficiency and discuss the slippage dynamics and active rotation behaviors on the membrane surface. The interplay of active particles and membranes highlights the essential role of nonequilibrium dynamics in cellular transport processes, with potential applications in drug delivery and nanotechnology. Finally, we provide an outlook highlighting the significance of deeper theoretical and simulation-based investigations to optimize active particles and understand their behavior in complex biological environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平衡动力学在细胞界面:从模拟和理论的见解
活性物质是消耗能量来施加机械力的物质,包括分子马达、合成纳米机器、主动推进的细菌和病毒。当活性物质与细胞界面相互作用时,会出现一系列独特的现象。活性改变了纳米颗粒在细胞内传递的机制,而细胞骨架中产生的主动机械过程在膜蛋白的分布和运输中起着重要作用。这篇综述提供了用于研究这些非平衡现象的理论和模拟模型的全面概述,为活性如何增强细胞摄取、影响膜变形和控制表面运输动力学提供了见解。此外,我们还探讨了膜的流动性和粘度等特性对传输效率的影响,并讨论了膜表面的滑动动力学和主动旋转行为。活性颗粒和膜的相互作用突出了非平衡动力学在细胞运输过程中的重要作用,在药物传递和纳米技术方面具有潜在的应用。最后,我们展望了基于理论和模拟的深入研究对优化活性粒子和了解它们在复杂生物环境中的行为的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Nonequilibrium Dynamics at Cellular Interfaces: Insights From Simulation and Theory Unveiling Drug Discovery Insights Through Molecular Electrostatic Potential Analysis Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1