Tuomas Korpinsalo, Juhana Rautavirta, Sami Huhtala, Tapani Reinikainen, Jukka Corander
{"title":"Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling","authors":"Tuomas Korpinsalo, Juhana Rautavirta, Sami Huhtala, Tapani Reinikainen, Jukka Corander","doi":"10.1002/cem.3630","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation-based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3630","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0
Abstract
Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation-based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.