Kaiguo Xiong, Junhu Zhao, Jie Yang, Jie Zhou, Shaobo Qiao, Guolin Feng
{"title":"Improvement in the Low Temperature Prediction Skill During Cold Winters Over the Mid–High Latitudes of Eurasia in CFSv2","authors":"Kaiguo Xiong, Junhu Zhao, Jie Yang, Jie Zhou, Shaobo Qiao, Guolin Feng","doi":"10.1002/joc.8688","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Regional cold winters have occurred frequently in Eurasia since the beginning of the 21st century, increasing the interannual variability in winter temperatures and increasing the difficulty of prediction. In this study, we evaluate the performance of Climate Forecast version 2 (CFSv2) of the National Centers for Environmental Prediction (NCEP) in predicting winter temperature anomalies over the Northern Hemisphere and find that CFSv2 has significantly lower temperature prediction ability for cold winters in the mid–high latitudes of Eurasia since the 21st century. This is mainly due to the stronger response to global warming and the weaker response to sea ice anomalies in the preceding autumn in CFSv2 than the in reanalysis. Accordingly, two targeted correction methods have been developed to improve the prediction ability, with the first method removing the linear temperature trend of CFSv2 predictions and the second method considering the effects of autumn Arctic Sea ice anomalies via a dynamical<b>–</b>statistical correction approach (DSCA). Both methods can effectively improve the prediction ability of winter temperature anomalies in the mid–high latitudes of Eurasia, especially in cold winters. The anomaly correlation coefficient (ACC) increased from −0.03 to 0.13 before and after the modification by the DSCA, and from −0.12 to 0.25 for cold winters. The DSCA significantly reduced the root mean square error (RMSE) of the CFSv2 predictions by approximately 10%.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 16","pages":"6100-6112"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8688","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Regional cold winters have occurred frequently in Eurasia since the beginning of the 21st century, increasing the interannual variability in winter temperatures and increasing the difficulty of prediction. In this study, we evaluate the performance of Climate Forecast version 2 (CFSv2) of the National Centers for Environmental Prediction (NCEP) in predicting winter temperature anomalies over the Northern Hemisphere and find that CFSv2 has significantly lower temperature prediction ability for cold winters in the mid–high latitudes of Eurasia since the 21st century. This is mainly due to the stronger response to global warming and the weaker response to sea ice anomalies in the preceding autumn in CFSv2 than the in reanalysis. Accordingly, two targeted correction methods have been developed to improve the prediction ability, with the first method removing the linear temperature trend of CFSv2 predictions and the second method considering the effects of autumn Arctic Sea ice anomalies via a dynamical–statistical correction approach (DSCA). Both methods can effectively improve the prediction ability of winter temperature anomalies in the mid–high latitudes of Eurasia, especially in cold winters. The anomaly correlation coefficient (ACC) increased from −0.03 to 0.13 before and after the modification by the DSCA, and from −0.12 to 0.25 for cold winters. The DSCA significantly reduced the root mean square error (RMSE) of the CFSv2 predictions by approximately 10%.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions