Using electromagnetic induction to inform precision turfgrass management strategies in sand-capped golf course fairways

IF 1.3 Q3 AGRONOMY Agrosystems, Geosciences & Environment Pub Date : 2024-12-13 DOI:10.1002/agg2.70020
Dallas M. Williams, Chase M. Straw, A. Peyton Smith, Kathryn L. Watkins, Sarah G. Hong, Weston F. Floyd, Briana M. Wyatt
{"title":"Using electromagnetic induction to inform precision turfgrass management strategies in sand-capped golf course fairways","authors":"Dallas M. Williams,&nbsp;Chase M. Straw,&nbsp;A. Peyton Smith,&nbsp;Kathryn L. Watkins,&nbsp;Sarah G. Hong,&nbsp;Weston F. Floyd,&nbsp;Briana M. Wyatt","doi":"10.1002/agg2.70020","DOIUrl":null,"url":null,"abstract":"<p>To meet the turfgrass standards that players expect, golf course superintendents rely on intense irrigation, fertilization, and cultivation programs. However, the overapplication of irrigation water and fertilizer has been shown to have negative effects on water quality. Precision turfgrass management (PTM) is an emerging area of interest as more golf course superintendents are looking to increase input efficiency while simultaneously reducing water and fertilizer input costs, as well as environmental impacts. Our objectives were to (1) use electromagnetic induction (EMI) to determine the spatial variability of apparent electrical conductivity (EC) in sand-capped fairways and (2) correlate EC to measured soil and turfgrass characteristics to determine the applicability of mapping EC for PTM. Soil samples and EC data were collected in spring 2021 on four sand-capped fairways from two golf courses (one hybrid bermudagrass and one zoysiagrass) belonging to the same facility in southeast Texas. Apparent EC was found to be positively and significantly correlated with soil volumetric water content (VWC, 0.40 &lt; <i>r &gt;</i> 0.62) and turfgrass normalized difference vegetation index (NDVI; 0.21 &lt; <i>r &gt;</i> 0.46) in three of four fairways, while EC was negatively and significantly correlated with penetration resistance (PR, −0.29 &lt; <i>r</i> &gt; −0.48) in two of four fairways studied. The strengths of these relationships were corroborated by strong visual similarities when comparing spatial maps of EC with those of VWC, NDVI, and PR, indicating that EMI-based EC data have potential for use in delineating site-specific management zones for water and fertilizer applications, as well as targeted aeration.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.70020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the turfgrass standards that players expect, golf course superintendents rely on intense irrigation, fertilization, and cultivation programs. However, the overapplication of irrigation water and fertilizer has been shown to have negative effects on water quality. Precision turfgrass management (PTM) is an emerging area of interest as more golf course superintendents are looking to increase input efficiency while simultaneously reducing water and fertilizer input costs, as well as environmental impacts. Our objectives were to (1) use electromagnetic induction (EMI) to determine the spatial variability of apparent electrical conductivity (EC) in sand-capped fairways and (2) correlate EC to measured soil and turfgrass characteristics to determine the applicability of mapping EC for PTM. Soil samples and EC data were collected in spring 2021 on four sand-capped fairways from two golf courses (one hybrid bermudagrass and one zoysiagrass) belonging to the same facility in southeast Texas. Apparent EC was found to be positively and significantly correlated with soil volumetric water content (VWC, 0.40 < r > 0.62) and turfgrass normalized difference vegetation index (NDVI; 0.21 < r > 0.46) in three of four fairways, while EC was negatively and significantly correlated with penetration resistance (PR, −0.29 < r > −0.48) in two of four fairways studied. The strengths of these relationships were corroborated by strong visual similarities when comparing spatial maps of EC with those of VWC, NDVI, and PR, indicating that EMI-based EC data have potential for use in delineating site-specific management zones for water and fertilizer applications, as well as targeted aeration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电磁感应为沙顶高尔夫球场球道草坪精确管理策略提供信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
期刊最新文献
Salinity management with subsurface drainage over 9 years in a soybean–wheat–corn rotation Root and shoot biomass and nutrient composition of winter rye cover crop following corn and soybean Understanding the yield impacts of alternative cover crop families and mixtures: Evidence from side-by-side plot-level panel data Carbon sequestration through sustainable land management practices in arid and semiarid regions: Insights from New Mexico Using electromagnetic induction to inform precision turfgrass management strategies in sand-capped golf course fairways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1