Design and Optimization of Dielectric Resonator–Based Two-Port Filtering Radiator With Machine Learning for Sub-6 GHz 5G Wireless Applications

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Communication Systems Pub Date : 2024-12-17 DOI:10.1002/dac.6098
Ashraf Samarah, Ashish Bagwari
{"title":"Design and Optimization of Dielectric Resonator–Based Two-Port Filtering Radiator With Machine Learning for Sub-6 GHz 5G Wireless Applications","authors":"Ashraf Samarah,&nbsp;Ashish Bagwari","doi":"10.1002/dac.6098","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper proposes the structured and investigation of multi-port ceramic-based aerial with filtering, high gain, and circular polarization features. The alumina ceramic is excited using a cross-shaped microstrip line. Defected ground structure (DGS) is utilized to provide good impedance matching within the operating band. Metasurface suspension over the two-port aerial improves the gain level by an amount of 10.2 dBi. The application of polarization diversity idea helps to improve separation between aerial ports by 25 dB. The prediction of |S<sub>11</sub>| and axial ratio using random forest and XGBoost-built machine learning (ML) technique reduces the computational complexity. Fabricated prototype confirms that the designed antenna operates in between 2.55 and 3.45 GHz, and 3-dB axial ratio is found in between 2.75 and 3.15 GHz. Directive far-field attributes and suitable amount of diversity parameters confirm its applicability for sub-6 GHz-based 5G communication system.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.6098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes the structured and investigation of multi-port ceramic-based aerial with filtering, high gain, and circular polarization features. The alumina ceramic is excited using a cross-shaped microstrip line. Defected ground structure (DGS) is utilized to provide good impedance matching within the operating band. Metasurface suspension over the two-port aerial improves the gain level by an amount of 10.2 dBi. The application of polarization diversity idea helps to improve separation between aerial ports by 25 dB. The prediction of |S11| and axial ratio using random forest and XGBoost-built machine learning (ML) technique reduces the computational complexity. Fabricated prototype confirms that the designed antenna operates in between 2.55 and 3.45 GHz, and 3-dB axial ratio is found in between 2.75 and 3.15 GHz. Directive far-field attributes and suitable amount of diversity parameters confirm its applicability for sub-6 GHz-based 5G communication system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于介质谐振器的基于机器学习的Sub-6 GHz 5G无线应用双端口滤波散热器设计与优化
本文提出了具有滤波、高增益和圆极化特性的多端口陶瓷天线的结构和研究。氧化铝陶瓷是用十字形微带线激发的。利用缺陷接地结构(DGS)在工作频带内提供良好的阻抗匹配。双端口天线上的超表面悬架将增益水平提高了10.2 dBi。极化分集思想的应用有助于将空口间的分离提高25 dB。利用随机森林和xgboost构建的机器学习(ML)技术预测|S11|和轴比,降低了计算复杂度。制作的样机证实,设计的天线工作在2.55 ~ 3.45 GHz之间,3db轴比在2.75 ~ 3.15 GHz之间。指示的远场属性和适当数量的分集参数确定了其适用于基于sub- 6ghz的5G通信系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
期刊最新文献
A Simple Chirping-Based Spectrum Sensing Scheme for Cognitive Radio Applications SIW Technology for 5G Antenna Applications and Beyond—A Critical Review RETRACTION: Evolution from ancient medication to human-centered Healthcare 4.0: A review on health care recommender systems Improved Deep Reinforcement Learning With Faster Graph Recurrent Convolutional Neural Network-Enabled Adaptive Network Slicing for Tailored Service Delivery in NextGen Networks Optimizing Spectrum Efficiency With MIMO NOMA PD Approach in a 5G Cooperative Spectrum Sharing Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1