Rodrigue Tanguy, Annett Bartsch, Ingmar Nitze, Anna Irrgang, Pia Petzold, Barbara Widhalm, Clemens von Baeckmann, Julia Boike, Julia Martin, Aleksandra Efimova, Gonçalo Vieira, Dustin Whalen, Birgit Heim, Mareike Wieczorek, Guido Grosse
{"title":"Pan-Arctic Assessment of Coastal Settlements and Infrastructure Vulnerable to Coastal Erosion, Sea-Level Rise, and Permafrost Thaw","authors":"Rodrigue Tanguy, Annett Bartsch, Ingmar Nitze, Anna Irrgang, Pia Petzold, Barbara Widhalm, Clemens von Baeckmann, Julia Boike, Julia Martin, Aleksandra Efimova, Gonçalo Vieira, Dustin Whalen, Birgit Heim, Mareike Wieczorek, Guido Grosse","doi":"10.1029/2024EF005013","DOIUrl":null,"url":null,"abstract":"<p>This study assesses the vulnerability of Arctic coastal settlements and infrastructure to coastal erosion, Sea-Level Rise (SLR) and permafrost warming. For the first time, we characterize coastline retreat consistently along permafrost coastal settlements at the regional scale for the Northern Hemisphere. We provide a new method to automatically derive long-term coastline change rates for permafrost coasts. In addition, we identify the total number of coastal settlements and associated infrastructure that could be threatened by marine and terrestrial changes using remote sensing techniques. We extended the Arctic Coastal Infrastructure data set (SACHI) to include road types, airstrips, and artificial water reservoirs. The analysis of coastline, Ground Temperature (GT) and Active Layer Thickness (ALT) changes from 2000 to 2020, in addition with SLR projection, allowed to identify exposed settlements and infrastructure for 2030, 2050, and 2100. We validated the SACHI-v2, GT and ALT data sets through comparisons with in-situ data. 60% of the detected infrastructure is built on low-lying coast (<span></span><math>\n <semantics>\n <mrow>\n <mo><</mo>\n </mrow>\n <annotation> ${< } $</annotation>\n </semantics></math>10 m a.s.l). The results show that in 2100, 45% of all coastal settlements will be affected by SLR and 21% by coastal erosion. On average, coastal permafrost GT is increasing by 0.8°C per decade, and ALT is increasing by 6 cm per decade. In 2100, GT will become positive at 77% of the built infrastructure area. Our results highlight the circumpolar and international amplitude of the problem and emphasize the need for immediate adaptation measures to current and future environmental changes to counteract a deterioration of living conditions and ensure infrastructure sustainability.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 12","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005013","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study assesses the vulnerability of Arctic coastal settlements and infrastructure to coastal erosion, Sea-Level Rise (SLR) and permafrost warming. For the first time, we characterize coastline retreat consistently along permafrost coastal settlements at the regional scale for the Northern Hemisphere. We provide a new method to automatically derive long-term coastline change rates for permafrost coasts. In addition, we identify the total number of coastal settlements and associated infrastructure that could be threatened by marine and terrestrial changes using remote sensing techniques. We extended the Arctic Coastal Infrastructure data set (SACHI) to include road types, airstrips, and artificial water reservoirs. The analysis of coastline, Ground Temperature (GT) and Active Layer Thickness (ALT) changes from 2000 to 2020, in addition with SLR projection, allowed to identify exposed settlements and infrastructure for 2030, 2050, and 2100. We validated the SACHI-v2, GT and ALT data sets through comparisons with in-situ data. 60% of the detected infrastructure is built on low-lying coast (10 m a.s.l). The results show that in 2100, 45% of all coastal settlements will be affected by SLR and 21% by coastal erosion. On average, coastal permafrost GT is increasing by 0.8°C per decade, and ALT is increasing by 6 cm per decade. In 2100, GT will become positive at 77% of the built infrastructure area. Our results highlight the circumpolar and international amplitude of the problem and emphasize the need for immediate adaptation measures to current and future environmental changes to counteract a deterioration of living conditions and ensure infrastructure sustainability.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.