Bridging the Gap Between Global Weather Prediction and Global Storm-Resolving Simulation: Introducing the GFDL 6.5-km SHiELD

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-12-19 DOI:10.1029/2024MS004430
Linjiong Zhou, Lucas Harris, Jan-Huey Chen, Kun Gao, Kai-Yuan Cheng, Mingjing Tong, Alex Kaltenbaugh, Matthew Morin, Joseph Mouallem, Lauren Chilutti, Lily Johnston
{"title":"Bridging the Gap Between Global Weather Prediction and Global Storm-Resolving Simulation: Introducing the GFDL 6.5-km SHiELD","authors":"Linjiong Zhou,&nbsp;Lucas Harris,&nbsp;Jan-Huey Chen,&nbsp;Kun Gao,&nbsp;Kai-Yuan Cheng,&nbsp;Mingjing Tong,&nbsp;Alex Kaltenbaugh,&nbsp;Matthew Morin,&nbsp;Joseph Mouallem,&nbsp;Lauren Chilutti,&nbsp;Lily Johnston","doi":"10.1029/2024MS004430","DOIUrl":null,"url":null,"abstract":"<p>We introduce a 6.5-km version of the Geophysical Fluid Dynamics Laboratory (GFDL)'s System for High-resolution prediction on Earth-to-Local Domains (SHiELD). This global model is designed to bridge the gap between global medium-range weather prediction and global storm-resolving simulation while remaining practical for real-time forecast. The 6.5-km SHiELD represents a significant advancement over GFDL's flagship global forecast system, the 13-km SHiELD. This global model features a holistically-developed scale-aware suite of physical parameterizations, stepping into the formidable convective “gray zone” of resolutions below 10 km. Comparative analyses with the 13-km SHiELD, conducted over a 3-year hindcast period, highlight noteworthy improvements across global-scale, regional-scale, tropical cyclone (TC), and continental convection predictions. In particular, the 6.5-km SHiELD excels in predicting considerably finer-scale convective systems associated with large-scale frontal systems and extratropical cyclones. The predictions of global temperature, wind, cloud, and precipitation are significantly improved in this global model. Regionally, over the contiguous United States and the Maritime Continent, substantial reductions in prediction biases of precipitation, cloud cover, and wind fields are also found. In the mesoscale realm, the model demonstrates prominent improvements in global TC intensity and continental convective precipitation prediction: biases are relieved, and skill is higher. These findings affirm the superiority of the 6.5-km SHiELD compared to the current 13-km SHiELD, which will advance weather prediction by successfully addressing both synoptic weather systems and specific storm-scale phenomena in the same global model.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004430","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a 6.5-km version of the Geophysical Fluid Dynamics Laboratory (GFDL)'s System for High-resolution prediction on Earth-to-Local Domains (SHiELD). This global model is designed to bridge the gap between global medium-range weather prediction and global storm-resolving simulation while remaining practical for real-time forecast. The 6.5-km SHiELD represents a significant advancement over GFDL's flagship global forecast system, the 13-km SHiELD. This global model features a holistically-developed scale-aware suite of physical parameterizations, stepping into the formidable convective “gray zone” of resolutions below 10 km. Comparative analyses with the 13-km SHiELD, conducted over a 3-year hindcast period, highlight noteworthy improvements across global-scale, regional-scale, tropical cyclone (TC), and continental convection predictions. In particular, the 6.5-km SHiELD excels in predicting considerably finer-scale convective systems associated with large-scale frontal systems and extratropical cyclones. The predictions of global temperature, wind, cloud, and precipitation are significantly improved in this global model. Regionally, over the contiguous United States and the Maritime Continent, substantial reductions in prediction biases of precipitation, cloud cover, and wind fields are also found. In the mesoscale realm, the model demonstrates prominent improvements in global TC intensity and continental convective precipitation prediction: biases are relieved, and skill is higher. These findings affirm the superiority of the 6.5-km SHiELD compared to the current 13-km SHiELD, which will advance weather prediction by successfully addressing both synoptic weather systems and specific storm-scale phenomena in the same global model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
Bridging the Gap Between Global Weather Prediction and Global Storm-Resolving Simulation: Introducing the GFDL 6.5-km SHiELD The Averaged Hydrostatic Boussinesq Ocean Equations in Generalized Vertical Coordinates Improving Urban Climate Adaptation Modeling in the Community Earth System Model (CESM) Through Transient Urban Surface Albedo Representation Physical Drivers and Biogeochemical Effects of the Projected Decline of the Shelfbreak Jet in the Northwest North Atlantic Ocean Climatological Adaptive Bias Correction of Climate Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1