An improved Dai-Liao-style hybrid conjugate gradient-based method for solving unconstrained nonconvex optimization and extension to constrained nonlinear monotone equations

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED Mathematical Methods in the Applied Sciences Pub Date : 2024-08-19 DOI:10.1002/mma.10396
Zihang Yuan, Hu Shao, Xiaping Zeng, Pengjie Liu, Xianglin Rong, Jianhao Zhou
{"title":"An improved Dai-Liao-style hybrid conjugate gradient-based method for solving unconstrained nonconvex optimization and extension to constrained nonlinear monotone equations","authors":"Zihang Yuan,&nbsp;Hu Shao,&nbsp;Xiaping Zeng,&nbsp;Pengjie Liu,&nbsp;Xianglin Rong,&nbsp;Jianhao Zhou","doi":"10.1002/mma.10396","DOIUrl":null,"url":null,"abstract":"<p>In this work, for unconstrained optimization, we introduce an improved Dai-Liao-style hybrid conjugate gradient method based on the hybridization-based self-adaptive technique, and the search direction generated fulfills the sufficient descent and trust region properties regardless of any line search. The global convergence is established under standard Wolfe line search and common assumptions. Then, combining the hyperplane projection technique and a new self-adaptive line search, we extend the proposed conjugate gradient method and obtain an improved Dai-Liao-style hybrid conjugate gradient projection method to solve constrained nonlinear monotone equations. Under mild conditions, we obtain its global convergence without Lipschitz continuity. In addition, the convergence rates for the two proposed methods are analyzed, respectively. Finally, numerical experiments are conducted to demonstrate the effectiveness of the proposed methods.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"1563-1588"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10396","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10396","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, for unconstrained optimization, we introduce an improved Dai-Liao-style hybrid conjugate gradient method based on the hybridization-based self-adaptive technique, and the search direction generated fulfills the sufficient descent and trust region properties regardless of any line search. The global convergence is established under standard Wolfe line search and common assumptions. Then, combining the hyperplane projection technique and a new self-adaptive line search, we extend the proposed conjugate gradient method and obtain an improved Dai-Liao-style hybrid conjugate gradient projection method to solve constrained nonlinear monotone equations. Under mild conditions, we obtain its global convergence without Lipschitz continuity. In addition, the convergence rates for the two proposed methods are analyzed, respectively. Finally, numerical experiments are conducted to demonstrate the effectiveness of the proposed methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于戴-廖式混合共轭梯度的改进方法,用于求解无约束非凸优化并扩展到约束非线性单调方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
期刊最新文献
Issue Information Issue Information Issue Information Issue Information Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1