Aircraft human-machine interaction assistant design: A novel multimodal data processing and application framework

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2024-10-28 DOI:10.1049/cth2.12754
Ao Wu, Yang Jin, Maolong Lv, Huanyu Li, Leyan Li, Rennong Yang
{"title":"Aircraft human-machine interaction assistant design: A novel multimodal data processing and application framework","authors":"Ao Wu,&nbsp;Yang Jin,&nbsp;Maolong Lv,&nbsp;Huanyu Li,&nbsp;Leyan Li,&nbsp;Rennong Yang","doi":"10.1049/cth2.12754","DOIUrl":null,"url":null,"abstract":"<p>During aircraft operations, pilots rely on human-machine interaction platforms to access essential information services. However, the development of a highly usable aerial assistant necessitates the incorporation of two interaction modes: active-command and passive-response modes, along with three input modes: voice inputs, situation inputs, and plan inputs. This research focuses on the design of an aircraft human-machine interaction assistant (AHMIA), which serves as a multimodal data processing and application framework for human-to-machine interaction in a fully voice-controlled manner. For the voice mode, a finetuned FunASR model is employed, leveraging private aeronautical datasets to enable specific aeronautical speech recognition. For the situation mode, a hierarchical situation events extraction model is proposed, facilitating the utilization of high-level situational features. For the plan mode, a multi-formations double-code network plan diagram with a timeline is utilized to effectively represent plan information. Notably, to bridge the gap between human language and machine language, a hierarchical knowledge engine named process-event-condition-order-skill (PECOS) is introduced. PECOS provides three distinct products: the PECOS model, the PECOS state chart, and the PECOS knowledge description. Simulation results within the air confrontation scenario demonstrate that AHMIA enables active-command and passive-response interactions with pilots, thereby enhancing the overall interaction modality.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 18","pages":"2742-2765"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12754","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12754","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

During aircraft operations, pilots rely on human-machine interaction platforms to access essential information services. However, the development of a highly usable aerial assistant necessitates the incorporation of two interaction modes: active-command and passive-response modes, along with three input modes: voice inputs, situation inputs, and plan inputs. This research focuses on the design of an aircraft human-machine interaction assistant (AHMIA), which serves as a multimodal data processing and application framework for human-to-machine interaction in a fully voice-controlled manner. For the voice mode, a finetuned FunASR model is employed, leveraging private aeronautical datasets to enable specific aeronautical speech recognition. For the situation mode, a hierarchical situation events extraction model is proposed, facilitating the utilization of high-level situational features. For the plan mode, a multi-formations double-code network plan diagram with a timeline is utilized to effectively represent plan information. Notably, to bridge the gap between human language and machine language, a hierarchical knowledge engine named process-event-condition-order-skill (PECOS) is introduced. PECOS provides three distinct products: the PECOS model, the PECOS state chart, and the PECOS knowledge description. Simulation results within the air confrontation scenario demonstrate that AHMIA enables active-command and passive-response interactions with pilots, thereby enhancing the overall interaction modality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
飞机人机交互助手设计:新型多模态数据处理和应用框架
在飞机运行过程中,飞行员依靠人机交互平台获取必要的信息服务。然而,开发高度可用的空中助手需要结合两种交互模式:主动指挥和被动响应模式,以及三种输入模式:语音输入、情况输入和计划输入。本研究的重点是设计一个飞机人机交互助手(AHMIA),它是一个以全语音控制方式进行人机交互的多模态数据处理和应用框架。对于语音模式,采用微调的FunASR模型,利用私人航空数据集实现特定的航空语音识别。对于情境模式,提出了一种分层的情境事件提取模型,便于高层情境特征的利用。对于规划模式,采用带时间轴的多阵型双码网络规划图有效地表示规划信息。值得注意的是,为了弥合人类语言和机器语言之间的差距,引入了一种名为过程-事件-条件-顺序-技能(PECOS)的分层知识引擎。PECOS提供了三种不同的产品:PECOS模型、PECOS状态图和PECOS知识描述。空中对抗场景中的仿真结果表明,AHMIA能够与飞行员进行主动指挥和被动响应交互,从而增强整体交互方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Adaptive dynamic programming for trajectory tracking control of a tractor-trailer wheeled mobile robot Design of a novel robust adaptive backstepping controller optimized by snake algorithm for buck-boost converter Optimized design of a pseudo-linearization-based model predictive controller: Direct data-driven approach A motor fault diagnosis using hybrid binary differential evolution algorithm and whale optimization algorithm with storage space VSDRL: A robust and accurate unmanned aerial vehicle autonomous landing scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1