Mapping the gene space at single-cell resolution with gene signal pattern analysis

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-12-20 DOI:10.1038/s43588-024-00734-0
Aarthi Venkat, Sam Leone, Scott E. Youlten, Eric Fagerberg, John Attanasio, Nikhil S. Joshi, Michael Perlmutter, Smita Krishnaswamy
{"title":"Mapping the gene space at single-cell resolution with gene signal pattern analysis","authors":"Aarthi Venkat, Sam Leone, Scott E. Youlten, Eric Fagerberg, John Attanasio, Nikhil S. Joshi, Michael Perlmutter, Smita Krishnaswamy","doi":"10.1038/s43588-024-00734-0","DOIUrl":null,"url":null,"abstract":"In single-cell sequencing analysis, several computational methods have been developed to map the cellular state space, but little has been done to map or create embeddings of the gene space. Here we formulate the gene embedding problem, design tasks with simulated single-cell data to evaluate representations, and establish ten relevant baselines. We then present a graph signal processing approach, called gene signal pattern analysis (GSPA), that learns rich gene representations from single-cell data using a dictionary of diffusion wavelets on the cell–cell graph. GSPA enables characterization of genes based on their patterning and localization on the cellular manifold. We motivate and demonstrate the efficacy of GSPA as a framework for diverse biological tasks, such as capturing gene co-expression modules, condition-specific enrichment and perturbation-specific gene–gene interactions. Then we showcase the broad utility of gene representations derived from GSPA, including for cell–cell communication (GSPA-LR), spatial transcriptomics (GSPA-multimodal) and patient response (GSPA-Pt) analysis. This work presents a graph signal processing method, gene signal pattern analysis, to embed gene signals from single-cell sequencing data. In diverse experimental set-ups and case studies, GSPA establishes a gene-based framework for single-cell analysis.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"955-977"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00734-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In single-cell sequencing analysis, several computational methods have been developed to map the cellular state space, but little has been done to map or create embeddings of the gene space. Here we formulate the gene embedding problem, design tasks with simulated single-cell data to evaluate representations, and establish ten relevant baselines. We then present a graph signal processing approach, called gene signal pattern analysis (GSPA), that learns rich gene representations from single-cell data using a dictionary of diffusion wavelets on the cell–cell graph. GSPA enables characterization of genes based on their patterning and localization on the cellular manifold. We motivate and demonstrate the efficacy of GSPA as a framework for diverse biological tasks, such as capturing gene co-expression modules, condition-specific enrichment and perturbation-specific gene–gene interactions. Then we showcase the broad utility of gene representations derived from GSPA, including for cell–cell communication (GSPA-LR), spatial transcriptomics (GSPA-multimodal) and patient response (GSPA-Pt) analysis. This work presents a graph signal processing method, gene signal pattern analysis, to embed gene signals from single-cell sequencing data. In diverse experimental set-ups and case studies, GSPA establishes a gene-based framework for single-cell analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基因信号模式分析绘制单细胞分辨率的基因空间图谱
在单细胞测序分析中,已经开发了几种计算方法来映射细胞状态空间,但在映射或创建基因空间嵌入方面却鲜有建树。在这里,我们提出了基因嵌入问题,设计了模拟单细胞数据的任务来评估表征,并建立了十条相关基线。然后,我们提出了一种称为基因信号模式分析(GSPA)的图信号处理方法,该方法利用细胞-细胞图上的扩散小波字典从单细胞数据中学习丰富的基因表征。GSPA 能够根据基因在细胞流形上的模式和定位来描述基因的特征。我们激励并证明了 GSPA 框架在多种生物任务中的功效,如捕捉基因共表达模块、特定条件富集和特定扰动的基因-基因相互作用。然后,我们展示了由 GSPA 衍生的基因表征的广泛用途,包括细胞-细胞通讯(GSPA-LR)、空间转录组学(GSPA-multimodal)和患者反应(GSPA-Pt)分析。本研究提出了一种图信号处理方法--基因信号模式分析,用于嵌入单细胞测序数据中的基因信号。在各种实验设置和案例研究中,GSPA 为单细胞分析建立了一个基于基因的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Enhancing synthesis prediction via machine learning. Harnessing large language models for data-scarce learning of polymer properties. A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies. MultiSTAAR delivers multi-trait rare variant analysis of biobank-scale sequencing data. Balancing autonomy and expertise in autonomous synthesis laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1