Interplay of chain dynamics and ion transport on mechanical behavior and conductivity in ionogels.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Soft Matter Pub Date : 2024-12-20 DOI:10.1039/d4sm01251h
Mengze Lu, Wei Zhen Lian, Zhenhua Xiao, Lu Liu, Zhiwei Fan, Xiaolin Jin, Chuanxia Jiang, Qian Chen, Zheng-Hai Tang, Panchao Yin, Taolin Sun
{"title":"Interplay of chain dynamics and ion transport on mechanical behavior and conductivity in ionogels.","authors":"Mengze Lu, Wei Zhen Lian, Zhenhua Xiao, Lu Liu, Zhiwei Fan, Xiaolin Jin, Chuanxia Jiang, Qian Chen, Zheng-Hai Tang, Panchao Yin, Taolin Sun","doi":"10.1039/d4sm01251h","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the interplay among the mechanical behavior, ionic conductivity and chain dynamics of ionogels is essential for designing flexible conductors that exhibit both high conductivity and excellent mechanical properties. In this study, ionogels were synthesized <i>via</i> the radical polymerization of <i>N</i>,<i>N</i>'-dimethylacrylamide (DMAA) and methacrylic acid (MAAc) monomers in the presence of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane sulfonate ([EMIM][OTf]). By varying the mass content of ionic liquid within ionogels, we investigated the mechanical behavior and ionic conductivity at the macroscopic scale using tensile, rheological testing and electrochemical impedance spectroscopy, as well as the dynamic behavior of chain segments and ions within the network at the microscopic scale using broadband dielectric relaxation spectroscopy (BDS) over a broad temperature range. Our findings revealed that variations in ionic liquid concentration significantly affect mechanical performance, ionic conductivity, complex conductivity spectra, and complex permittivity spectra. These ionogels exhibited remarkable stretchability, adhesion, and strain-sensing capabilities. Analysis of BDS indicated that the temperature dependence of the hopping frequency (<i>ω</i><sub>H</sub>), the conductivity of free ions (<i>σ</i><sub>dc</sub>), and the relaxation time (<i>τ</i><sub>s</sub>) of chain segments conforms to the Vogel-Tammann-Fulcher (VTF) equation for ionogels with varying ionic liquid content. By correlating <i>τ</i><sub>s</sub> measured through rheological tests and BDS, we observed a transition from Arrhenius to VTF behavior, which shifts towards lower temperatures with increasing ionic liquid content. This study highlighted a strong coupling between <i>σ</i><sub>dc</sub> and <i>ω</i><sub>H</sub>, as well as between 1/<i>τ</i><sub>s</sub> and <i>ω</i><sub>H</sub>, at low ionic concentrations, facilitating high mechanical performance of the ionogels due to viscoelastic energy dissipation. However, as the ionic concentration increased, a slight decoupling of <i>σ</i><sub>dc</sub> and <i>ω</i><sub>H</sub> was noted, leading to a substantial reduction in the mechanical properties of the ionogels. Ultimately, these ionogels demonstrate potential as polymer electrolytes for applications in flexible wearable devices.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01251h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the interplay among the mechanical behavior, ionic conductivity and chain dynamics of ionogels is essential for designing flexible conductors that exhibit both high conductivity and excellent mechanical properties. In this study, ionogels were synthesized via the radical polymerization of N,N'-dimethylacrylamide (DMAA) and methacrylic acid (MAAc) monomers in the presence of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane sulfonate ([EMIM][OTf]). By varying the mass content of ionic liquid within ionogels, we investigated the mechanical behavior and ionic conductivity at the macroscopic scale using tensile, rheological testing and electrochemical impedance spectroscopy, as well as the dynamic behavior of chain segments and ions within the network at the microscopic scale using broadband dielectric relaxation spectroscopy (BDS) over a broad temperature range. Our findings revealed that variations in ionic liquid concentration significantly affect mechanical performance, ionic conductivity, complex conductivity spectra, and complex permittivity spectra. These ionogels exhibited remarkable stretchability, adhesion, and strain-sensing capabilities. Analysis of BDS indicated that the temperature dependence of the hopping frequency (ωH), the conductivity of free ions (σdc), and the relaxation time (τs) of chain segments conforms to the Vogel-Tammann-Fulcher (VTF) equation for ionogels with varying ionic liquid content. By correlating τs measured through rheological tests and BDS, we observed a transition from Arrhenius to VTF behavior, which shifts towards lower temperatures with increasing ionic liquid content. This study highlighted a strong coupling between σdc and ωH, as well as between 1/τs and ωH, at low ionic concentrations, facilitating high mechanical performance of the ionogels due to viscoelastic energy dissipation. However, as the ionic concentration increased, a slight decoupling of σdc and ωH was noted, leading to a substantial reduction in the mechanical properties of the ionogels. Ultimately, these ionogels demonstrate potential as polymer electrolytes for applications in flexible wearable devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
期刊最新文献
Interplay of chain dynamics and ion transport on mechanical behavior and conductivity in ionogels. Magnetic microwire rheometer reveals differences in hydrogel degradation via disulfide reducing agents. Non-monotonic frictional behavior in the lubricated sliding of soft patterned surfaces. Protein-polyelectrolyte complexation: effects of sterically repulsive groups, macromolecular architecture and hierarchical assembly. Optimizing the charge transport in redox-active gels: a computational study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1