Direct Tensile Testing of Free-Standing Ultrathin Polymer Films on Liquid Surface at High Temperature.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-12-19 DOI:10.1002/smtd.202401291
Tae-Ik Lee, Ji Hun Kim, Eun Sung Oh, Taek-Soo Kim
{"title":"Direct Tensile Testing of Free-Standing Ultrathin Polymer Films on Liquid Surface at High Temperature.","authors":"Tae-Ik Lee, Ji Hun Kim, Eun Sung Oh, Taek-Soo Kim","doi":"10.1002/smtd.202401291","DOIUrl":null,"url":null,"abstract":"<p><p>The fragile nature of ultrathin polymer films poses a challenge for precise mechanical property measurements in a free-standing state, despite their critical importance for the fabrication and performance of advanced electronic devices under thermal loading. Here, a novel high-temperature tensile testing method for free-standing ultrathin polymer films using a film on heated liquid (FOHL) platform is proposed. Glycerol is chosen for the thermally stable liquid platform for its high surface tension, high boiling point, miscibility with water, and chemical stability. A defect healing process of the specimen on the heated liquid effectively eliminates preexisting defects of the brittle polymer sample, enabling precise tensile property measurements at elevated temperatures. The methodology is validated through experiments on polystyrene (PS) films of varying thicknesses (50-400 nm) at elevated temperatures of 25-100 °C, demonstrating the influence of temperature and thickness on tensile properties. Decreasing elastic modulus with increasing temperature and decreasing thickness of ultrathin PS films is accurately measured. The proposed method provides a reliable method todirectly evaluate the tensile properties of ultrathin films in high-temperature conditions.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401291"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401291","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fragile nature of ultrathin polymer films poses a challenge for precise mechanical property measurements in a free-standing state, despite their critical importance for the fabrication and performance of advanced electronic devices under thermal loading. Here, a novel high-temperature tensile testing method for free-standing ultrathin polymer films using a film on heated liquid (FOHL) platform is proposed. Glycerol is chosen for the thermally stable liquid platform for its high surface tension, high boiling point, miscibility with water, and chemical stability. A defect healing process of the specimen on the heated liquid effectively eliminates preexisting defects of the brittle polymer sample, enabling precise tensile property measurements at elevated temperatures. The methodology is validated through experiments on polystyrene (PS) films of varying thicknesses (50-400 nm) at elevated temperatures of 25-100 °C, demonstrating the influence of temperature and thickness on tensile properties. Decreasing elastic modulus with increasing temperature and decreasing thickness of ultrathin PS films is accurately measured. The proposed method provides a reliable method todirectly evaluate the tensile properties of ultrathin films in high-temperature conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Dimeric DNA Aptamers for the Spike Protein of SARS-CoV-2 Derived from a Structured Library with Dual Random Domains. Direct Tensile Testing of Free-Standing Ultrathin Polymer Films on Liquid Surface at High Temperature. Photonic Inks with Dual-Layer Security Features by Encapsulation of Color Tunable Fluorescent Dyes in PMMA Colloidal Microspheres. Cyanogroup-Modified PEO-Based Electrolytes Achieve High Free Al3+ Concentration and Improve the Transport Dynamics in Solid-State Aluminum-Ion Batteries. Toward Automated DNA Nanoprinting: Advancing the Synthesis of Covalently Branched DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1