Enteroendocrine Cells Sense Sucrose and Alter Enteric Neuron Excitability via Insulin Signaling.

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS Advanced biology Pub Date : 2024-12-20 DOI:10.1002/adbi.202300566
Jessica R Snyder, Minhal Ahmed, Sukhada Bhave, Ryo Hotta, Ryan A Koppes, Allan M Goldstein, Abigail N Koppes
{"title":"Enteroendocrine Cells Sense Sucrose and Alter Enteric Neuron Excitability via Insulin Signaling.","authors":"Jessica R Snyder, Minhal Ahmed, Sukhada Bhave, Ryo Hotta, Ryan A Koppes, Allan M Goldstein, Abigail N Koppes","doi":"10.1002/adbi.202300566","DOIUrl":null,"url":null,"abstract":"<p><p>Neurosensory circuits of the gastrointestinal tract sense microbial and nutrient changes in the gut; however, studying these circuits in vivo is hindered by invasive techniques and ethical concerns. Here, an in vitro model of enteroendocrine cells (EECs) and calcium reporting enteric neurons (ENs) is established and validated for functional signaling. Both mechanical and sucrose stimulation of co-cultures increased the percentage of neurons undergoing a calcium flux, indicating an action potential. Neuronal activation is blocked with either a piezo or insulin receptor blocker. At baseline, a flow only stimulus elicited 51.9% of neurons to activate in co-culture, which is decreased to 15.1% with a piezo blocker. Piezo blocked and sucrose stimulated EECs increased neuronal activation to 43.9%, and an insulin blocker reduced response to 12.4%. Since a cell line is used to model the EEC in the previous experiments, primary rat duodenal epithelium enriched for EECs are also stimulated and found to produced measurable insulin. This work shows the ability of EECs to produce insulin and for ENs to sense insulin. These results inspire further work on how insulin production outside the pancreas effects diabetes, insulin as a neurotransmitter, and exploration of additional nutritional and microbiotic stimuli on enteroendocrine-to-neuronal signaling.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2300566"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202300566","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Neurosensory circuits of the gastrointestinal tract sense microbial and nutrient changes in the gut; however, studying these circuits in vivo is hindered by invasive techniques and ethical concerns. Here, an in vitro model of enteroendocrine cells (EECs) and calcium reporting enteric neurons (ENs) is established and validated for functional signaling. Both mechanical and sucrose stimulation of co-cultures increased the percentage of neurons undergoing a calcium flux, indicating an action potential. Neuronal activation is blocked with either a piezo or insulin receptor blocker. At baseline, a flow only stimulus elicited 51.9% of neurons to activate in co-culture, which is decreased to 15.1% with a piezo blocker. Piezo blocked and sucrose stimulated EECs increased neuronal activation to 43.9%, and an insulin blocker reduced response to 12.4%. Since a cell line is used to model the EEC in the previous experiments, primary rat duodenal epithelium enriched for EECs are also stimulated and found to produced measurable insulin. This work shows the ability of EECs to produce insulin and for ENs to sense insulin. These results inspire further work on how insulin production outside the pancreas effects diabetes, insulin as a neurotransmitter, and exploration of additional nutritional and microbiotic stimuli on enteroendocrine-to-neuronal signaling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
期刊最新文献
Enteroendocrine Cells Sense Sucrose and Alter Enteric Neuron Excitability via Insulin Signaling. Unveiling the Potential of Natural Resources-Derived Therapeutics for Improved Malaria Management: Computational to Experimental Studies. Characterization and Optimization of Vesicle Properties in bioPISA: from Size Distribution to Post-Assembly Loading. Granulocyte Colony Stimulating Factor Enhances Decidualization Process of Endometrial Stromal Cells Through STAT3/HOXA10 Axis. Development of a pH-Responsive Antimicrobial and Potent Antioxidant Hydrogel for Accelerated Wound Healing: A Game Changer in Drug Delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1