ssMutPA: single-sample mutation-based pathway analysis approach for cancer precision medicine.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES GigaScience Pub Date : 2024-01-02 DOI:10.1093/gigascience/giae105
Yalan He, Jiyin Lai, Qian Wang, Bingyue Pan, Siyuan Li, Xilong Zhao, Ziyi Wang, Yongbao Zhang, Yujie Tang, Junwei Han
{"title":"ssMutPA: single-sample mutation-based pathway analysis approach for cancer precision medicine.","authors":"Yalan He, Jiyin Lai, Qian Wang, Bingyue Pan, Siyuan Li, Xilong Zhao, Ziyi Wang, Yongbao Zhang, Yujie Tang, Junwei Han","doi":"10.1093/gigascience/giae105","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-sample pathway enrichment analysis is an effective approach for identifying cancer subtypes and pathway biomarkers, facilitating the development of precision medicine. However, the existing approaches focused on investigating the changes in gene expression levels but neglected somatic mutations, which play a crucial role in cancer development.</p><p><strong>Findings: </strong>In this study, we proposed a novel single-sample mutation-based pathway analysis approach (ssMutPA) to infer individualized pathway activities by integrating somatic mutation data and the protein-protein interaction network. For each sample, ssMutPA first uses local and global weighted strategies to evaluate the effects of genes from mutations according to the network topology and then calculates a single-sample mutation-based pathway enrichment score (ssMutPES) to reflect the accumulated effect of mutations of each pathway. To illustrate the performance of ssMutPA, we applied it to 33 cancer cohorts from The Cancer Genome Atlas database and revealed patient stratification with significantly different prognosis in each cancer type based on the ssMutPES profiles. We also found that the identified characteristic pathways with high overlap across different cancers could be used as potential prognosis biomarkers. Moreover, we applied ssMutPA to 2 melanoma cohorts with immunotherapy and identified a subgroup of patients who may benefit from therapy.</p><p><strong>Conclusions: </strong>We provided evidence that ssMutPA could infer mutation-based individualized pathway activity profiles and complement the current individualized pathway analysis approaches focused on gene expression data, which may offer the potential for the development of precision medicine. ssMutPA is available at https://CRAN.R-project.org/package=ssMutPA.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae105","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Single-sample pathway enrichment analysis is an effective approach for identifying cancer subtypes and pathway biomarkers, facilitating the development of precision medicine. However, the existing approaches focused on investigating the changes in gene expression levels but neglected somatic mutations, which play a crucial role in cancer development.

Findings: In this study, we proposed a novel single-sample mutation-based pathway analysis approach (ssMutPA) to infer individualized pathway activities by integrating somatic mutation data and the protein-protein interaction network. For each sample, ssMutPA first uses local and global weighted strategies to evaluate the effects of genes from mutations according to the network topology and then calculates a single-sample mutation-based pathway enrichment score (ssMutPES) to reflect the accumulated effect of mutations of each pathway. To illustrate the performance of ssMutPA, we applied it to 33 cancer cohorts from The Cancer Genome Atlas database and revealed patient stratification with significantly different prognosis in each cancer type based on the ssMutPES profiles. We also found that the identified characteristic pathways with high overlap across different cancers could be used as potential prognosis biomarkers. Moreover, we applied ssMutPA to 2 melanoma cohorts with immunotherapy and identified a subgroup of patients who may benefit from therapy.

Conclusions: We provided evidence that ssMutPA could infer mutation-based individualized pathway activity profiles and complement the current individualized pathway analysis approaches focused on gene expression data, which may offer the potential for the development of precision medicine. ssMutPA is available at https://CRAN.R-project.org/package=ssMutPA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ssMutPA:基于单样本突变的癌症精准医学路径分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
期刊最新文献
IPEV: identification of prokaryotic and eukaryotic virus-derived sequences in virome using deep learning Large-scale genomic survey with deep learning-based method reveals strain-level phage specificity determinants An effective strategy for assembling the sex-limited chromosome Enhanced bovine genome annotation through integration of transcriptomics and epi-transcriptomics datasets facilitates genomic biology Korea4K: whole genome sequences of 4,157 Koreans with 107 phenotypes derived from extensive health check-ups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1