Ying Hu, Hai Yan, Ming Liu, Jing Gao, Lianhong Xie, Chunyu Zhang, Lili Wei, Yinging Ding, Hong Jiang
{"title":"Detecting cardiovascular diseases using unsupervised machine learning clustering based on electronic medical records.","authors":"Ying Hu, Hai Yan, Ming Liu, Jing Gao, Lianhong Xie, Chunyu Zhang, Lili Wei, Yinging Ding, Hong Jiang","doi":"10.1186/s12874-024-02422-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Electronic medical records (EMR)-trained machine learning models have the potential in CVD risk prediction by integrating a range of medical data from patients, facilitate timely diagnosis and classification of CVDs. We tested the hypothesis that unsupervised ML approach utilizing EMR could be used to develop a new model for detecting prevalent CVD in clinical settings.</p><p><strong>Methods: </strong>We included 155,894 patients (aged ≥ 18 years) discharged between January 2014 and July 2022, from Xuhui Hospital, Shanghai, China, including 64,916 CVD cases and 90,979 non-CVD cases. K-means clustering was used to generate the clustering models with k = 2, 4, and 8 as predetermined number of clusters k = 2, 4, and 8. Bayesian theorem was used to estimate the models' predictive accuracy.</p><p><strong>Results: </strong>The overall predictive accuracy of the 2-, 4-, and 8-classification clustering models in the training set was 0.856, 0.8634, and 0.8506, respectively. Similarly, the predictive accuracy of the 2-, 4-, and 8-classification clustering models in the testing set was 0.8598, 0.8659, and 0.8525, respectively. After reducing from 19 dimensions to 2 dimensions by principal component analysis, significant separation was observed for CVD cases and non-CVD cases in both training and testing sets.</p><p><strong>Conclusion: </strong>Our findings indicate that the utilization of EMR data can support the development of a robust model for CVD detection through an unsupervised ML approach. Further investigation using longitudinal design is needed to refine the model for its applications in clinical settings.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"309"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02422-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Electronic medical records (EMR)-trained machine learning models have the potential in CVD risk prediction by integrating a range of medical data from patients, facilitate timely diagnosis and classification of CVDs. We tested the hypothesis that unsupervised ML approach utilizing EMR could be used to develop a new model for detecting prevalent CVD in clinical settings.
Methods: We included 155,894 patients (aged ≥ 18 years) discharged between January 2014 and July 2022, from Xuhui Hospital, Shanghai, China, including 64,916 CVD cases and 90,979 non-CVD cases. K-means clustering was used to generate the clustering models with k = 2, 4, and 8 as predetermined number of clusters k = 2, 4, and 8. Bayesian theorem was used to estimate the models' predictive accuracy.
Results: The overall predictive accuracy of the 2-, 4-, and 8-classification clustering models in the training set was 0.856, 0.8634, and 0.8506, respectively. Similarly, the predictive accuracy of the 2-, 4-, and 8-classification clustering models in the testing set was 0.8598, 0.8659, and 0.8525, respectively. After reducing from 19 dimensions to 2 dimensions by principal component analysis, significant separation was observed for CVD cases and non-CVD cases in both training and testing sets.
Conclusion: Our findings indicate that the utilization of EMR data can support the development of a robust model for CVD detection through an unsupervised ML approach. Further investigation using longitudinal design is needed to refine the model for its applications in clinical settings.
期刊介绍:
BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.