Effectiveness of a Novel PLA2R1 Knock-in Middle Age Rat Model in Repairing Renal Function Damage

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Function Pub Date : 2024-12-19 DOI:10.1002/cbf.70032
Daihe Yang, Zitong Zhang, Lu Zhao, Wendong Sui, Yinyin Li, Yun Zhou, Bo Huang
{"title":"Effectiveness of a Novel PLA2R1 Knock-in Middle Age Rat Model in Repairing Renal Function Damage","authors":"Daihe Yang,&nbsp;Zitong Zhang,&nbsp;Lu Zhao,&nbsp;Wendong Sui,&nbsp;Yinyin Li,&nbsp;Yun Zhou,&nbsp;Bo Huang","doi":"10.1002/cbf.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Phospholipase A2 receptor 1 (PLA2R1) exists important role in membranous nephropathy. In this study, we evaluate a PLA2R1 in a middle-aged rat model of renal function repair to further investigate the molecular mechanisms of membranous nephropathy. We analyzed the PLA2R1 knockout (KO) model and PLA2R1 knock in (KI) model in rats, extending the time to 85 weeks of age. Urinary biochemical indicators were detected using a fully automated biochemical analyzer. The complement C3, IgG, and Nephrin were detected using the immunofluorescence method. Western blot was used to detect the expression levels of complement C3, IgA and PLA2R1 in middle-aged models. The KO model continues to display glomerular proteinuria, complement C3 aggregation, and IgA and IgG deposition. Comparing with the KO model, the deposition of complement C3 and IgA in the glomerulus of the KI chimeric model still exists and IgG expression weakened. Inserting humanized PLA2R1 into rats can continuously repair partial renal function and reduce proteinuria, which will help investigate the pathogenesis of membranous nephropathy and complement activation signaling pathways.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phospholipase A2 receptor 1 (PLA2R1) exists important role in membranous nephropathy. In this study, we evaluate a PLA2R1 in a middle-aged rat model of renal function repair to further investigate the molecular mechanisms of membranous nephropathy. We analyzed the PLA2R1 knockout (KO) model and PLA2R1 knock in (KI) model in rats, extending the time to 85 weeks of age. Urinary biochemical indicators were detected using a fully automated biochemical analyzer. The complement C3, IgG, and Nephrin were detected using the immunofluorescence method. Western blot was used to detect the expression levels of complement C3, IgA and PLA2R1 in middle-aged models. The KO model continues to display glomerular proteinuria, complement C3 aggregation, and IgA and IgG deposition. Comparing with the KO model, the deposition of complement C3 and IgA in the glomerulus of the KI chimeric model still exists and IgG expression weakened. Inserting humanized PLA2R1 into rats can continuously repair partial renal function and reduce proteinuria, which will help investigate the pathogenesis of membranous nephropathy and complement activation signaling pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
期刊最新文献
Biotechnological Interventions for the Production of Subunit Vaccines Against Group A Rotavirus Melatonin-Supplemented Obese Female Mice Show Less Inflammation in Ovarian Adipocytes and Browning in Subcutaneous Adipocytes Epigenetic Regulation by Histone Methylation and Demethylation in Freeze-Tolerant Frog Kidney Effectiveness of a Novel PLA2R1 Knock-in Middle Age Rat Model in Repairing Renal Function Damage Effect of Aconitum diphtheria on the Proliferation, Apoptosis, and Inflammatory Response of Rheumatoid Arthritis Fibroblast-Like Synoviocytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1