In response to Mutti et al. 2024 commentary on "Transient intracranial pressure elevations (B waves) associated with sleep apnea: the neglected role of cyclic alternating pattern".

IF 5.9 1区 医学 Q1 NEUROSCIENCES Fluids and Barriers of the CNS Pub Date : 2024-12-19 DOI:10.1186/s12987-024-00610-z
Casper Schwartz Riedel
{"title":"In response to Mutti et al. 2024 commentary on \"Transient intracranial pressure elevations (B waves) associated with sleep apnea: the neglected role of cyclic alternating pattern\".","authors":"Casper Schwartz Riedel","doi":"10.1186/s12987-024-00610-z","DOIUrl":null,"url":null,"abstract":"<p><p>The physiology of transient intracranial pressure (ICP) elevations (B waves), remains incompletely understood and appears to involve multiple mechanisms, including obstructive sleep apnea (OSA). Transient ICP elevations are associated with OSA and cyclic alternating pattern (CAP) metrics, suggesting a complex interplay between sleep fragmentation and ICP dynamics. Additionally, CAP metrics could complement standard OSA assessments, providing deeper insights into transient ICP fluctuations, particularly in conditions like normal-pressure hydrocephalus and idiopathic intracranial hypertension. Future studies should explore CAP-ICP interactions to elucidate their physiological and clinical implications.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"105"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00610-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The physiology of transient intracranial pressure (ICP) elevations (B waves), remains incompletely understood and appears to involve multiple mechanisms, including obstructive sleep apnea (OSA). Transient ICP elevations are associated with OSA and cyclic alternating pattern (CAP) metrics, suggesting a complex interplay between sleep fragmentation and ICP dynamics. Additionally, CAP metrics could complement standard OSA assessments, providing deeper insights into transient ICP fluctuations, particularly in conditions like normal-pressure hydrocephalus and idiopathic intracranial hypertension. Future studies should explore CAP-ICP interactions to elucidate their physiological and clinical implications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回应Mutti等人2024年对“与睡眠呼吸暂停相关的短暂性颅内压升高(B波):循环交替模式被忽视的作用”的评论。
短暂性颅内压(ICP)升高(B波)的生理机制尚不完全清楚,似乎涉及多种机制,包括阻塞性睡眠呼吸暂停(OSA)。短暂的ICP升高与OSA和循环交替模式(CAP)指标相关,表明睡眠碎片化和ICP动态之间存在复杂的相互作用。此外,CAP指标可以补充标准的OSA评估,为瞬态ICP波动提供更深入的见解,特别是在常压脑积水和特发性颅内高压等情况下。未来的研究应探讨CAP-ICP相互作用,以阐明其生理和临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
期刊最新文献
Age-related cerebral ventriculomegaly occurs in patients with primary ciliary dyskinesia. Endothelial and neuronal engagement by AAV-BR1 gene therapy alleviates neurological symptoms and lipid deposition in a mouse model of Niemann-Pick type C2. Increasing brain half-life of antibodies by additional binding to myelin oligodendrocyte glycoprotein, a CNS specific protein. A novel method for detecting intracranial pressure changes by monitoring cerebral perfusion via electrical impedance tomography. Exploring the ability of plasma pTau217, pTau181 and beta-amyloid in mirroring cerebrospinal fluid biomarker profile of Mild Cognitive Impairment by the fully automated Lumipulse® platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1