Intracellular mechanistic insights into cRGD-modified Bi2Se3 nanofoams for enhanced photothermal therapy via exocytosis inhibition

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-01-25 DOI:10.1016/j.ijpharm.2024.125093
Li Ding , Xinghua Yu , Shihao Cai , Azhar Mahmood , Wenjing Meng , Xiaotong Liu , Jiahan Liu , Jieyun Li , Xuejuan Zhang , Chuanbin Wu
{"title":"Intracellular mechanistic insights into cRGD-modified Bi2Se3 nanofoams for enhanced photothermal therapy via exocytosis inhibition","authors":"Li Ding ,&nbsp;Xinghua Yu ,&nbsp;Shihao Cai ,&nbsp;Azhar Mahmood ,&nbsp;Wenjing Meng ,&nbsp;Xiaotong Liu ,&nbsp;Jiahan Liu ,&nbsp;Jieyun Li ,&nbsp;Xuejuan Zhang ,&nbsp;Chuanbin Wu","doi":"10.1016/j.ijpharm.2024.125093","DOIUrl":null,"url":null,"abstract":"<div><div>The cRGD peptide surface coating strategy for photothermal therapy nanoplatforms shows great promise in developing safe and effective cancer therapies. However, the precise intracellular mechanisms of these platforms remain unclear due to the complexity of intracellular trafficking and nano-bio interactions. This study investigates the nano-bio interactions of Bi<sub>2</sub>Se<sub>3</sub> nanofoams, a representative photothermal therapy nanoplatform, coated with cRGD peptide in cancer cells, focusing on endocytosis, exocytosis, and cellular trafficking. Our findings reveal that the cRGD-coated Bi<sub>2</sub>Se<sub>3</sub> nanofoams are internalized through three distinct endocytosis pathways: Rab34-mediated macropinocytosis, caveolae-dependent, and clathrin-dependent endocytosis. These nanofoams then accumulate in lysosomes via autophagy. Furthermore, inhibiting exocytosis reduces the loss of these nanofoams from cancer cells, enhancing photothermal and chemotherapy effects. This exocytosis-inhibiting strategy demonstrates significant potential for cancer therapy, validated by successful in vitro and in vivo results.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"669 ","pages":"Article 125093"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324013279","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The cRGD peptide surface coating strategy for photothermal therapy nanoplatforms shows great promise in developing safe and effective cancer therapies. However, the precise intracellular mechanisms of these platforms remain unclear due to the complexity of intracellular trafficking and nano-bio interactions. This study investigates the nano-bio interactions of Bi2Se3 nanofoams, a representative photothermal therapy nanoplatform, coated with cRGD peptide in cancer cells, focusing on endocytosis, exocytosis, and cellular trafficking. Our findings reveal that the cRGD-coated Bi2Se3 nanofoams are internalized through three distinct endocytosis pathways: Rab34-mediated macropinocytosis, caveolae-dependent, and clathrin-dependent endocytosis. These nanofoams then accumulate in lysosomes via autophagy. Furthermore, inhibiting exocytosis reduces the loss of these nanofoams from cancer cells, enhancing photothermal and chemotherapy effects. This exocytosis-inhibiting strategy demonstrates significant potential for cancer therapy, validated by successful in vitro and in vivo results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
crgd修饰的Bi2Se3纳米泡沫通过胞外分泌抑制增强光热治疗的细胞内机制。
光热治疗纳米平台的cRGD肽表面涂层策略在开发安全有效的癌症治疗方法方面具有很大的前景。然而,由于细胞内运输和纳米生物相互作用的复杂性,这些平台的精确细胞内机制尚不清楚。本研究研究了具有代表性的光热治疗纳米平台Bi2Se3纳米泡沫包被cRGD肽在癌细胞中的纳米生物相互作用,重点研究了内吞作用、胞吐作用和细胞运输。我们的研究结果表明,crgd包被的Bi2Se3纳米泡沫通过三种不同的内吞途径被内化:rab34介导的巨噬细胞作用、小泡依赖的内吞作用和网格蛋白依赖的内吞作用。这些纳米泡沫随后通过自噬在溶酶体中积累。此外,抑制胞吐可以减少这些纳米泡沫从癌细胞中流失,增强光热和化疗效果。这种胞吐抑制策略证明了癌症治疗的巨大潜力,成功的体外和体内结果验证了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Doxorubicin hydrochloride
阿拉丁
Ethylene glycol
阿拉丁
D-(+)-glucose
阿拉丁
Sodium hydroxide
阿拉丁
Polyvinylpyrrolidone
阿拉丁
Bismuth nitrate pentahydrate
阿拉丁
doxorubicin hydrochloride (DOX-HCl)
阿拉丁
ethylene glycol (EG)
阿拉丁
D-(+)-glucose (C6H12O6)
阿拉丁
sodium hydroxide (NaOH)
阿拉丁
Polyvinylpyrrolidone (PVP)
阿拉丁
Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O)
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Harnessing the power of inorganic nanoparticles for the management of TNBC. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Targeted nasal delivery of LNP-mRNAs aerosolised by Rayleigh breakup technology. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1