Methods to Detect and Compare Cellular and Mitochondrial Changes in Senescent and Healthy Mesenchymal Stem Cells.

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-12-21 DOI:10.1007/7651_2024_581
Afshin Samiminemati, Mohd Shahzaib, Claudia Moriello, Nicola Alessio, Domenico Aprile, Tiziana Squillaro, Giovanni Di Bernardo, Umberto Galderisi
{"title":"Methods to Detect and Compare Cellular and Mitochondrial Changes in Senescent and Healthy Mesenchymal Stem Cells.","authors":"Afshin Samiminemati, Mohd Shahzaib, Claudia Moriello, Nicola Alessio, Domenico Aprile, Tiziana Squillaro, Giovanni Di Bernardo, Umberto Galderisi","doi":"10.1007/7651_2024_581","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is a multifaceted process marked by irreversible cell cycle arrest in response to stressors such as DNA damage, oxidative stress, and telomere shortening, leading to significant cellular and mitochondrial alterations. These changes impact mesenchymal stem cell (MSC) function, affecting their differentiation, self-renewal, and regenerative abilities. Senescent MSCs adopt the senescence-associated secretory phenotype (SASP), characterized by the secretion of pro-inflammatory factors that propagate senescence to neighboring cells. Key features of senescent MSCs include altered morphology, reduced proliferative and differentiation capacity, and changes in their secretome. Mitochondrial dysfunction plays a central role in this process, impairing stemness, increasing oxidative stress, and contributing to cellular aging by generating reactive oxygen species (ROS). The chapter provides an overview of various methods to analyze senescent cells, including techniques to detect changes in cell proliferation, DNA damage, apoptosis, and mitochondrial function. It also highlights assays for mitochondrial alterations such as fluorescent staining, membrane potential analysis, and mitophagy evaluation. These tools are essential for understanding the complex mechanisms of cellular senescence and mitochondrial dysfunction, offering insights into aging and potential therapeutic strategies.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular senescence is a multifaceted process marked by irreversible cell cycle arrest in response to stressors such as DNA damage, oxidative stress, and telomere shortening, leading to significant cellular and mitochondrial alterations. These changes impact mesenchymal stem cell (MSC) function, affecting their differentiation, self-renewal, and regenerative abilities. Senescent MSCs adopt the senescence-associated secretory phenotype (SASP), characterized by the secretion of pro-inflammatory factors that propagate senescence to neighboring cells. Key features of senescent MSCs include altered morphology, reduced proliferative and differentiation capacity, and changes in their secretome. Mitochondrial dysfunction plays a central role in this process, impairing stemness, increasing oxidative stress, and contributing to cellular aging by generating reactive oxygen species (ROS). The chapter provides an overview of various methods to analyze senescent cells, including techniques to detect changes in cell proliferation, DNA damage, apoptosis, and mitochondrial function. It also highlights assays for mitochondrial alterations such as fluorescent staining, membrane potential analysis, and mitophagy evaluation. These tools are essential for understanding the complex mechanisms of cellular senescence and mitochondrial dysfunction, offering insights into aging and potential therapeutic strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
Analyzing Muscle Stem Cell Function Ex Vivo. Establishment and Characterization of Patient-Derived Oral Cancer Organoids. In Silico Method for ssDNA Aptamer Binding with Aurora Kinase A Protein. Mouse Intestinal Organoid Culture Protocol. Ring Magnet-Guided Magnetic Manipulation for Biofabrication of 3D Cellular Structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1