Apoptotic and Molecular Mechanisms of Carthamidin in Breast Cancer Therapy: An Integrated In Vitro and In Silico Study.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2024-12-20 DOI:10.1007/s12033-024-01331-2
Selvakumari Palani, John Joseph, Priyadharshan Sridhar, Giridharan Bupesh, Konda Mani Saravanan, Rajkuberan Chandrasekaran
{"title":"Apoptotic and Molecular Mechanisms of Carthamidin in Breast Cancer Therapy: An Integrated In Vitro and In Silico Study.","authors":"Selvakumari Palani, John Joseph, Priyadharshan Sridhar, Giridharan Bupesh, Konda Mani Saravanan, Rajkuberan Chandrasekaran","doi":"10.1007/s12033-024-01331-2","DOIUrl":null,"url":null,"abstract":"<p><p>The current study examines the anticancer properties of the chemical carthamidin in breast cancer through in-vitro and in silico analysis. This study's results demonstrated that carthamidin strongly inhibited the proliferation of MCF 7 cells in vitro, as evidenced by an IC50 value of 128.65 µg/mL at 24 h, determined using the MTT test. Laser confocal microscopy utilizing AO/EB labeling validated apoptotic effects through upregulating pro-apoptotic cell markers. At the same time, the ROS assay demonstrated elevated ROS production in the treated cells. LDH leakage was corroborated by leakage analysis, revealing high LDH levels at 100 µg/mL. The cellular growth parameters were subsequently examined via flow cytometry, showing that the cell cycle was halted in the G0/G1 phase, with 82.9% of the cells residing there. The molecular docking research demonstrated that carthamidin displayed a significant binding affinity with Notch receptors - NOTCH 1-4 and p53, with binding scores ranging from - 5.027 to - 7.402 kcal/mol. The results suggest that carthamidin has therapeutic potential in inducing apoptosis and impairing cancer cells, warranting further investigation in breast cancer treatments.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01331-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study examines the anticancer properties of the chemical carthamidin in breast cancer through in-vitro and in silico analysis. This study's results demonstrated that carthamidin strongly inhibited the proliferation of MCF 7 cells in vitro, as evidenced by an IC50 value of 128.65 µg/mL at 24 h, determined using the MTT test. Laser confocal microscopy utilizing AO/EB labeling validated apoptotic effects through upregulating pro-apoptotic cell markers. At the same time, the ROS assay demonstrated elevated ROS production in the treated cells. LDH leakage was corroborated by leakage analysis, revealing high LDH levels at 100 µg/mL. The cellular growth parameters were subsequently examined via flow cytometry, showing that the cell cycle was halted in the G0/G1 phase, with 82.9% of the cells residing there. The molecular docking research demonstrated that carthamidin displayed a significant binding affinity with Notch receptors - NOTCH 1-4 and p53, with binding scores ranging from - 5.027 to - 7.402 kcal/mol. The results suggest that carthamidin has therapeutic potential in inducing apoptosis and impairing cancer cells, warranting further investigation in breast cancer treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肉豆蔻苷治疗乳腺癌的凋亡和分子机制:体外和体内综合研究
目前的研究通过体外和硅分析研究了化学物质carthamidin在乳腺癌中的抗癌特性。本研究结果表明,carthamidin在体外对mcf7细胞的增殖有较强的抑制作用,MTT法测定24h的IC50值为128.65µg/mL。利用AO/EB标记的激光共聚焦显微镜通过上调促凋亡细胞标记物证实了凋亡效应。同时,ROS测定显示处理细胞中ROS的产生升高。通过泄漏分析证实LDH泄漏,显示在100µg/mL时LDH含量较高。流式细胞术检测细胞生长参数,发现细胞周期停止在G0/G1期,82.9%的细胞停留在此期。分子对接研究表明,carthamidin与Notch受体Notch 1-4和p53具有显著的结合亲和力,结合评分范围为- 5.027 ~ - 7.402 kcal/mol。提示carthamidin具有诱导细胞凋亡和损伤癌细胞的治疗潜力,值得进一步研究其在乳腺癌治疗中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
Investigation of Circular RNA Expression Profiles in Ultrasound-guided Incomplete Radiofrequency Ablation Transplanted Tumor Models of Human Liver Cancer. Endoplasmic Reticulum Stress Promotes Neuronal Damage in Neonatal Hypoxic-Ischemic Brain Damage by Inducing Ferroptosis. An Analysis Regarding the Association Between DAZ Interacting Zinc Finger Protein 1 (DZIP1) and Colorectal Cancer (CRC). Integrin β4 Regulates Cell Migration of Lung Adenocarcinoma Through FAK Signaling. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1