{"title":"Engrailed1 in Parvalbumin-Positive Neurons Regulates Eye-Specific Retinogeniculate Segregation and Visual Function","authors":"Yuqing Chen, Chengyong Jiang, Biao Yan, Jiayi Zhang","doi":"10.1002/jnr.70007","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection. Additionally, we observed a decrease in the number of PV neurons in PV-Cre:En1<sup>fl/fl</sup> mice, accompanied by an increased level of cleaved caspase-3 in PV neurons. Furthermore, the genetic ablation of PV neurons in the retina through intraocular AAV-DIO-Caspase3 injection in PV-Cre mice was sufficient to disrupt retinogeniculate segregation. Finally, we observed that PV-Cre:En1<sup>fl/fl</sup> mice exhibited enhanced visual depth perception in the visual cliff test. These results demonstrate that En1 in PV neurons participates in eye-specific retinogeniculate segregation through cell survival and regulates binocular vision.</p>\n </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection. Additionally, we observed a decrease in the number of PV neurons in PV-Cre:En1fl/fl mice, accompanied by an increased level of cleaved caspase-3 in PV neurons. Furthermore, the genetic ablation of PV neurons in the retina through intraocular AAV-DIO-Caspase3 injection in PV-Cre mice was sufficient to disrupt retinogeniculate segregation. Finally, we observed that PV-Cre:En1fl/fl mice exhibited enhanced visual depth perception in the visual cliff test. These results demonstrate that En1 in PV neurons participates in eye-specific retinogeniculate segregation through cell survival and regulates binocular vision.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.