Hye In Lee, Bum-Sup Jang, Ji Hyun Chang, Eunji Kim, Tae Hoon Lee, Jeong Hwan Park, Eui Kyu Chie
{"title":"Relationships between the Microbiome and Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.","authors":"Hye In Lee, Bum-Sup Jang, Ji Hyun Chang, Eunji Kim, Tae Hoon Lee, Jeong Hwan Park, Eui Kyu Chie","doi":"10.4143/crt.2024.521","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to investigate the dynamic changes in the microbiome of patients with locally advanced rectal cancer (LARC) undergoing neoadjuvant chemoradiotherapy (nCRT), focusing on the relationship between the microbiome and response to nCRT.</p><p><strong>Materials and methods: </strong>We conducted a longitudinal study involving 103 samples from 26 patients with LARC. Samples were collected from both the tumor and normal rectal tissues before and after nCRT. Diversity, taxonomic, and network analyses were performed to compare the microbiome profiles across different tissue types, pre- and post-nCRT time-points, and nCRT responses.</p><p><strong>Results: </strong>Between the tumor and normal tissue samples, no differences in microbial diversity and composition were observed. However, when pre- and post-nCRT samples were compared, there was a significant decrease in diversity, along with notable changes in composition. Non-responders exhibited more extensive changes in their microbiome composition during nCRT, characterized by an increase in pathogenic microbes. Meanwhile, responders had relatively stable microbiome communities with more enriched butyrate-producing bacteria. Network analysis revealed distinct patterns of microbial interactions between responders and non-responders, where butyrate-producing bacteria formed strong networks in responders, while opportunistic pathogens formed strong networks in non-responders. A Bayesian network model for predicting the nCRT response was established, with butyrate-producing bacteria playing a major predictive role.</p><p><strong>Conclusion: </strong>Our study demonstrated a significant association between the microbiome and nCRT response in LARC patients, leading to the development of a microbiome-based response prediction model. These findings suggest potential applications of microbiome signatures for predicting and optimizing nCRT treatment in LARC patients.</p>","PeriodicalId":49094,"journal":{"name":"Cancer Research and Treatment","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4143/crt.2024.521","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to investigate the dynamic changes in the microbiome of patients with locally advanced rectal cancer (LARC) undergoing neoadjuvant chemoradiotherapy (nCRT), focusing on the relationship between the microbiome and response to nCRT.
Materials and methods: We conducted a longitudinal study involving 103 samples from 26 patients with LARC. Samples were collected from both the tumor and normal rectal tissues before and after nCRT. Diversity, taxonomic, and network analyses were performed to compare the microbiome profiles across different tissue types, pre- and post-nCRT time-points, and nCRT responses.
Results: Between the tumor and normal tissue samples, no differences in microbial diversity and composition were observed. However, when pre- and post-nCRT samples were compared, there was a significant decrease in diversity, along with notable changes in composition. Non-responders exhibited more extensive changes in their microbiome composition during nCRT, characterized by an increase in pathogenic microbes. Meanwhile, responders had relatively stable microbiome communities with more enriched butyrate-producing bacteria. Network analysis revealed distinct patterns of microbial interactions between responders and non-responders, where butyrate-producing bacteria formed strong networks in responders, while opportunistic pathogens formed strong networks in non-responders. A Bayesian network model for predicting the nCRT response was established, with butyrate-producing bacteria playing a major predictive role.
Conclusion: Our study demonstrated a significant association between the microbiome and nCRT response in LARC patients, leading to the development of a microbiome-based response prediction model. These findings suggest potential applications of microbiome signatures for predicting and optimizing nCRT treatment in LARC patients.
期刊介绍:
Cancer Research and Treatment is a peer-reviewed open access publication of the Korean Cancer Association. It is published quarterly, one volume per year. Abbreviated title is Cancer Res Treat. It accepts manuscripts relevant to experimental and clinical cancer research. Subjects include carcinogenesis, tumor biology, molecular oncology, cancer genetics, tumor immunology, epidemiology, predictive markers and cancer prevention, pathology, cancer diagnosis, screening and therapies including chemotherapy, surgery, radiation therapy, immunotherapy, gene therapy, multimodality treatment and palliative care.