{"title":"Duration of transients in outbreaks: when can infectiousness be estimated?","authors":"Adam Mielke, Lasse Engbo Christiansen","doi":"10.1007/s00285-024-02175-9","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate sub-leading orders of the classic SEIR-model using contact matrices from modeling of the Omicron and Delta variants of COVID-19 in Denmark. The goal of this is to illustrate when the growth rate, and by extension the infection transmission potential (basic or initial reproduction number), can be estimated in a new outbreak, e.g. after introduction of a new variant of a virus. In particular, we look at the time scale on which this happens in a realistic outbreak to guide future data collection. We find that as long as susceptible depletion is a minor effect, the transients are gone within around 3 weeks corresponding to about 4-5 times the incubation time. We also argue that this result generalizes to other airborne diseases in a fully mixed population.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 1","pages":"11"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02175-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate sub-leading orders of the classic SEIR-model using contact matrices from modeling of the Omicron and Delta variants of COVID-19 in Denmark. The goal of this is to illustrate when the growth rate, and by extension the infection transmission potential (basic or initial reproduction number), can be estimated in a new outbreak, e.g. after introduction of a new variant of a virus. In particular, we look at the time scale on which this happens in a realistic outbreak to guide future data collection. We find that as long as susceptible depletion is a minor effect, the transients are gone within around 3 weeks corresponding to about 4-5 times the incubation time. We also argue that this result generalizes to other airborne diseases in a fully mixed population.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.