Jianan Chen, Song Liu, Youxi Lin, Wenjun Hu, Huihong Shi, Nianchun Liao, Miaomiao Zhou, Wenjie Gao, Yanbo Chen, Peijie Shi
{"title":"The quality and accuracy of radiomics model in diagnosing osteoporosis: a systematic review and meta-analysis.","authors":"Jianan Chen, Song Liu, Youxi Lin, Wenjun Hu, Huihong Shi, Nianchun Liao, Miaomiao Zhou, Wenjie Gao, Yanbo Chen, Peijie Shi","doi":"10.1016/j.acra.2024.11.065","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>The purpose of this study is to conduct a meta-analysis to evaluate the diagnostic performance of current radiomics models for diagnosing osteoporosis, as well as to assess the methodology and reporting quality of these radiomics studies.</p><p><strong>Methods: </strong>According to PRISMA guidelines, four databases including MEDLINE, Web of Science, Embase and the Cochrane Library were searched systematically to select relevant studies published before July 18, 2024. The articles that used radiomics models for diagnosing osteoporosis were considered eligible. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and radiomics quality score (RQS) were used to assess the quality of included studies. The pooled diagnostic odds ratio (DOR), sensitivity, specificity, area under the summary receiver operator characteristic curve (AUC) were calculated to estimated diagnostic efficiency of pooled model.</p><p><strong>Results: </strong>A total of 25 studies were included, of which 24 provided usable data that were utilized for the meta-analysis, including 1553 patients with osteoporosis and 2200 patients without osteoporosis. The mean RQS score of included studies was 11.48 ± 4.92, with an adherence rate of 31.89%. The pooled DOR, sensitivity and specificity for model to diagnose osteoporosis were 81.72 (95% CI: 51.08 - 130.73), 0.90 (95% CI: 0.87-0.93) and 0.90 (95% CI: 0.87-0.93), respectively. The AUC was 0.96, indicating a high diagnostic capability. Subgroup analysis revealed that the use of different imaging modalities to construct radiomics models might be one source of heterogeneity. Radiomics models built using CT images and deep learning algorithms demonstrated higher diagnostic accuracy for osteoporosis.</p><p><strong>Conclusion: </strong>Radiomics models for the diagnosis of osteoporosis have high diagnostic efficacy. In the future, radiomics models for diagnosing osteoporosis will be an efficient instrument to assist clinical doctors in screening osteoporosis patients. However, relevant guidelines should be followed strictly to improve the quality of radiomics studies.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.065","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: The purpose of this study is to conduct a meta-analysis to evaluate the diagnostic performance of current radiomics models for diagnosing osteoporosis, as well as to assess the methodology and reporting quality of these radiomics studies.
Methods: According to PRISMA guidelines, four databases including MEDLINE, Web of Science, Embase and the Cochrane Library were searched systematically to select relevant studies published before July 18, 2024. The articles that used radiomics models for diagnosing osteoporosis were considered eligible. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and radiomics quality score (RQS) were used to assess the quality of included studies. The pooled diagnostic odds ratio (DOR), sensitivity, specificity, area under the summary receiver operator characteristic curve (AUC) were calculated to estimated diagnostic efficiency of pooled model.
Results: A total of 25 studies were included, of which 24 provided usable data that were utilized for the meta-analysis, including 1553 patients with osteoporosis and 2200 patients without osteoporosis. The mean RQS score of included studies was 11.48 ± 4.92, with an adherence rate of 31.89%. The pooled DOR, sensitivity and specificity for model to diagnose osteoporosis were 81.72 (95% CI: 51.08 - 130.73), 0.90 (95% CI: 0.87-0.93) and 0.90 (95% CI: 0.87-0.93), respectively. The AUC was 0.96, indicating a high diagnostic capability. Subgroup analysis revealed that the use of different imaging modalities to construct radiomics models might be one source of heterogeneity. Radiomics models built using CT images and deep learning algorithms demonstrated higher diagnostic accuracy for osteoporosis.
Conclusion: Radiomics models for the diagnosis of osteoporosis have high diagnostic efficacy. In the future, radiomics models for diagnosing osteoporosis will be an efficient instrument to assist clinical doctors in screening osteoporosis patients. However, relevant guidelines should be followed strictly to improve the quality of radiomics studies.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.