Glaucoma detection: Binocular approach and clinical data in machine learning

IF 6.1 2区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence in Medicine Pub Date : 2025-02-01 DOI:10.1016/j.artmed.2024.103050
Oleksandr Kovalyk-Borodyak, Juan Morales-Sánchez, Rafael Verdú-Monedero, José-Luis Sancho-Gómez
{"title":"Glaucoma detection: Binocular approach and clinical data in machine learning","authors":"Oleksandr Kovalyk-Borodyak,&nbsp;Juan Morales-Sánchez,&nbsp;Rafael Verdú-Monedero,&nbsp;José-Luis Sancho-Gómez","doi":"10.1016/j.artmed.2024.103050","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a multi-modal machine learning method to automate early glaucoma diagnosis. The proposed methodology introduces two novel aspects for automated diagnosis not previously explored in the literature: simultaneous use of ocular fundus images from both eyes and integration with the patient’s additional clinical data. We begin by establishing a baseline, termed <em>monocular mode</em>, which adheres to the traditional approach of considering the data from each eye as a separate instance. We then explore the <em>binocular mode</em>, investigating how combining information from both eyes of the same patient can enhance glaucoma diagnosis accuracy. This exploration employs the PAPILA dataset, comprising information from both eyes, clinical data, ocular fundus images, and expert segmentation of these images. Additionally, we compare two image-derived data modalities: direct ocular fundus images and morphological data from manual expert segmentation. Our method integrates Gradient-Boosted Decision Trees (GBDT) and Convolutional Neural Networks (CNN), specifically focusing on the MobileNet, VGG16, ResNet-50, and Inception models. SHAP values are used to interpret GBDT models, while the Deep Explainer method is applied in conjunction with SHAP to analyze the outputs of convolutional-based models. Our findings show the viability of considering both eyes, which improves the model performance. The binocular approach, incorporating information from morphological and clinical data yielded an AUC of 0.796 (<span><math><mrow><mo>±</mo><mn>0</mn><mo>.</mo><mn>003</mn></mrow></math></span> at a 95% confidence interval), while the CNN, using the same approach (both eyes), achieved an AUC of 0.764 (<span><math><mrow><mo>±</mo><mn>0</mn><mo>.</mo><mn>005</mn></mrow></math></span> at a 95% confidence interval).</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"160 ","pages":"Article 103050"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365724002926","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a multi-modal machine learning method to automate early glaucoma diagnosis. The proposed methodology introduces two novel aspects for automated diagnosis not previously explored in the literature: simultaneous use of ocular fundus images from both eyes and integration with the patient’s additional clinical data. We begin by establishing a baseline, termed monocular mode, which adheres to the traditional approach of considering the data from each eye as a separate instance. We then explore the binocular mode, investigating how combining information from both eyes of the same patient can enhance glaucoma diagnosis accuracy. This exploration employs the PAPILA dataset, comprising information from both eyes, clinical data, ocular fundus images, and expert segmentation of these images. Additionally, we compare two image-derived data modalities: direct ocular fundus images and morphological data from manual expert segmentation. Our method integrates Gradient-Boosted Decision Trees (GBDT) and Convolutional Neural Networks (CNN), specifically focusing on the MobileNet, VGG16, ResNet-50, and Inception models. SHAP values are used to interpret GBDT models, while the Deep Explainer method is applied in conjunction with SHAP to analyze the outputs of convolutional-based models. Our findings show the viability of considering both eyes, which improves the model performance. The binocular approach, incorporating information from morphological and clinical data yielded an AUC of 0.796 (±0.003 at a 95% confidence interval), while the CNN, using the same approach (both eyes), achieved an AUC of 0.764 (±0.005 at a 95% confidence interval).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青光眼检测:双目入路和机器学习中的临床数据。
在这项工作中,我们提出了一种多模态机器学习方法来自动化早期青光眼诊断。提出的方法为自动诊断引入了两个新的方面,以前没有在文献中探索:同时使用双眼眼底图像,并与患者的额外临床数据整合。我们首先建立一个基线,称为单眼模式,它坚持将每只眼睛的数据视为单独实例的传统方法。然后我们探索双眼模式,研究如何结合来自同一患者两只眼睛的信息来提高青光眼的诊断准确性。本研究采用PAPILA数据集,包括双眼信息、临床数据、眼底图像以及这些图像的专家分割。此外,我们比较了两种图像衍生的数据模式:直接眼底图像和人工专家分割的形态学数据。我们的方法集成了梯度增强决策树(GBDT)和卷积神经网络(CNN),特别关注MobileNet, VGG16, ResNet-50和盗梦空间模型。SHAP值用于解释GBDT模型,而Deep Explainer方法与SHAP一起用于分析基于卷积的模型的输出。我们的研究结果表明,考虑两只眼睛的可行性,这提高了模型的性能。结合形态学和临床数据信息的双眼入路的AUC为0.796(95%置信区间±0.003),而使用相同方法(双眼)的CNN的AUC为0.764(95%置信区间±0.005)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Medicine
Artificial Intelligence in Medicine 工程技术-工程:生物医学
CiteScore
15.00
自引率
2.70%
发文量
143
审稿时长
6.3 months
期刊介绍: Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care. Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.
期刊最新文献
Hyperbolic multivariate feature learning in higher-order heterogeneous networks for drug–disease prediction Editorial Board BDFormer: Boundary-aware dual-decoder transformer for skin lesion segmentation Finger-aware Artificial Neural Network for predicting arthritis in Patients with hand pain Artificial intelligence-driven approaches in antibiotic stewardship programs and optimizing prescription practices: A systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1