Smart medical report: efficient detection of common and rare diseases on common blood tests.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES Frontiers in digital health Pub Date : 2024-12-05 eCollection Date: 2024-01-01 DOI:10.3389/fdgth.2024.1505483
Ákos Németh, Gábor Tóth, Péter Fülöp, György Paragh, Bíborka Nádró, Zsolt Karányi, György Paragh, Zsolt Horváth, Zsolt Csernák, Erzsébet Pintér, Dániel Sándor, Gábor Bagyó, István Édes, János Kappelmayer, Mariann Harangi, Bálint Daróczy
{"title":"Smart medical report: efficient detection of common and rare diseases on common blood tests.","authors":"Ákos Németh, Gábor Tóth, Péter Fülöp, György Paragh, Bíborka Nádró, Zsolt Karányi, György Paragh, Zsolt Horváth, Zsolt Csernák, Erzsébet Pintér, Dániel Sándor, Gábor Bagyó, István Édes, János Kappelmayer, Mariann Harangi, Bálint Daróczy","doi":"10.3389/fdgth.2024.1505483","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The integration of AI into healthcare is widely anticipated to revolutionize medical diagnostics, enabling earlier, more accurate disease detection and personalized care.</p><p><strong>Methods: </strong>In this study, we developed and validated an AI-assisted diagnostic support tool using only routinely ordered and broadly available blood tests to predict the presence of major chronic and acute diseases as well as rare disorders.</p><p><strong>Results: </strong>Our model was tested on both retrospective and prospective datasets comprising over one million patients. We evaluated the diagnostic performance by (1) implementing ensemble learning (mean ROC-AUC.9293 and mean DOR 63.96); (2) assessing the model's sensitivity via risk scores to simulate its screening effectiveness; (3) analyzing the potential for early disease detection (30-270 days before clinical diagnosis) through creating historical patient timelines and (4) conducting validation on real-world clinical data in collaboration with Synlab Hungary, to assess the tool's performance in clinical setting.</p><p><strong>Discussion: </strong>Uniquely, our model not only considers stable blood values but also tracks changes from baseline across 15 years of patient history. Our AI-driven automated diagnostic tool can significantly enhance clinical practice by recognizing patterns in common and rare diseases, including malignancies. The models' ability to detect diseases 1-9 months earlier than traditional clinical diagnosis could contribute to reduced healthcare costs and improved patient outcomes. The automated evaluation also reduces evaluation time of healthcare providers, which accelerates diagnostic processes. By utilizing only routine blood tests and ensemble methods, the tool demonstrates high efficacy across independent laboratories and hospitals, making it an exceptionally valuable screening resource for primary care physicians.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"6 ","pages":"1505483"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2024.1505483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The integration of AI into healthcare is widely anticipated to revolutionize medical diagnostics, enabling earlier, more accurate disease detection and personalized care.

Methods: In this study, we developed and validated an AI-assisted diagnostic support tool using only routinely ordered and broadly available blood tests to predict the presence of major chronic and acute diseases as well as rare disorders.

Results: Our model was tested on both retrospective and prospective datasets comprising over one million patients. We evaluated the diagnostic performance by (1) implementing ensemble learning (mean ROC-AUC.9293 and mean DOR 63.96); (2) assessing the model's sensitivity via risk scores to simulate its screening effectiveness; (3) analyzing the potential for early disease detection (30-270 days before clinical diagnosis) through creating historical patient timelines and (4) conducting validation on real-world clinical data in collaboration with Synlab Hungary, to assess the tool's performance in clinical setting.

Discussion: Uniquely, our model not only considers stable blood values but also tracks changes from baseline across 15 years of patient history. Our AI-driven automated diagnostic tool can significantly enhance clinical practice by recognizing patterns in common and rare diseases, including malignancies. The models' ability to detect diseases 1-9 months earlier than traditional clinical diagnosis could contribute to reduced healthcare costs and improved patient outcomes. The automated evaluation also reduces evaluation time of healthcare providers, which accelerates diagnostic processes. By utilizing only routine blood tests and ensemble methods, the tool demonstrates high efficacy across independent laboratories and hospitals, making it an exceptionally valuable screening resource for primary care physicians.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能医疗报告:在常见血液检测中高效发现常见病和罕见病。
人工智能与医疗保健的整合被广泛预期将彻底改变医疗诊断,实现更早、更准确的疾病检测和个性化护理。方法:在本研究中,我们开发并验证了一种人工智能辅助诊断支持工具,该工具仅使用常规订购和广泛可用的血液检查来预测主要慢性和急性疾病以及罕见疾病的存在。结果:我们的模型在包括100多万患者的回顾性和前瞻性数据集上进行了测试。我们通过(1)实现集成学习(mean ROC-AUC)来评估诊断性能。9293,平均DOR 63.96);(2)通过风险评分评估模型的敏感性,模拟模型的筛选效果;(3)通过创建历史患者时间表,分析早期疾病检测(临床诊断前30-270天)的潜力;(4)与Synlab Hungary合作,对现实世界的临床数据进行验证,以评估该工具在临床环境中的性能。讨论:独特的是,我们的模型不仅考虑了稳定的血液值,而且还跟踪了15年患者病史的基线变化。我们的人工智能驱动的自动诊断工具可以通过识别常见和罕见疾病(包括恶性肿瘤)的模式,显著增强临床实践。该模型比传统临床诊断早1-9个月发现疾病的能力有助于降低医疗成本并改善患者的预后。自动化评估还减少了医疗保健提供者的评估时间,从而加快了诊断过程。通过仅使用常规血液检查和综合方法,该工具在独立实验室和医院中显示出高效率,使其成为初级保健医生非常宝贵的筛查资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Support in digital health skill development for vulnerable groups in a public library setting: perspectives of trainers. A novel machine learning based framework for developing composite digital biomarkers of disease progression. Building an open-source community to enhance autonomic nervous system signal analysis: DBDP-autonomic. Cyber-bioethics: the new ethical discipline for digital health. Augmented Reality for extremity hemorrhage training: a usability study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1