{"title":"Transduction of Human Fetal Liver Hematopoietic CD34+ Stem and Progenitor Cells into a Cell Line by Enhancing Telomerase Activity.","authors":"Rashmi Bhardwaj, Lalit Kumar, Deepika Chhabra, Atul Sharma, Sujata Mohanty, Narinder Mehra, Vinod Kochupillai","doi":"10.18502/ijhoscr.v18i4.16758","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Human fetal liver hematopoietic stem cells have proven potential as therapeutics but lack extensive research due to their limited supply. Even <i>in vitro</i> expanded fetal liver hematopoietic stem cells enter senescence or lose their self-renewal capacity after a few days in culture. The present study aimed to obtain a homogeneous and persistent supply of hematopoietic stem cells from the fetal liver by establishing a cell line through immortalization of cells by enhancing telomerase activity. <b>Materials and Methods</b>: Human fetal liver hematopoietic CD34+ stem and progenitor cells were transformed and immortalized using retroviruses carrying the human telomerase (hTERT) gene. Following transduction, telomerase activity was assessed using the TRAP assay and telomere length was e<i>x</i>amined by Southern blotting in transduced cells. Their characterization was conducted using flowcytometry to analyze the CD34+ population of hematopoietic stem cells and their colony forming potential using colony forming unit (CFU) assay. <b>Results</b>: After transduction with hTERT, the life span of human fetal liver hematopoietic CD34+ stem and progenitor cells were extended to 80 population doublings, without any change in cell morphology or population doubling times. Constitutive hTERT expression enhanced the replicative capacity and prevented terminal differentiation of CD34+ fetal liver hematopoietic stem and progenitor cells (FLHSPCs). Moreover, hTERT-transduced stem cells maintained their telomere length and telomerase activity. <b>Conclusion:</b> By introducing telomerase activity into hematopoietic stem and progenitor cells, their lifespan can be extended while maintaining stemness. These modified cells hold promise for <i>in</i> <i>vitro</i> research focused on studying hematopoietic stem cells derived from fetal liver.</p>","PeriodicalId":94048,"journal":{"name":"International journal of hematology-oncology and stem cell research","volume":"18 4","pages":"330-343"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hematology-oncology and stem cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijhoscr.v18i4.16758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Human fetal liver hematopoietic stem cells have proven potential as therapeutics but lack extensive research due to their limited supply. Even in vitro expanded fetal liver hematopoietic stem cells enter senescence or lose their self-renewal capacity after a few days in culture. The present study aimed to obtain a homogeneous and persistent supply of hematopoietic stem cells from the fetal liver by establishing a cell line through immortalization of cells by enhancing telomerase activity. Materials and Methods: Human fetal liver hematopoietic CD34+ stem and progenitor cells were transformed and immortalized using retroviruses carrying the human telomerase (hTERT) gene. Following transduction, telomerase activity was assessed using the TRAP assay and telomere length was examined by Southern blotting in transduced cells. Their characterization was conducted using flowcytometry to analyze the CD34+ population of hematopoietic stem cells and their colony forming potential using colony forming unit (CFU) assay. Results: After transduction with hTERT, the life span of human fetal liver hematopoietic CD34+ stem and progenitor cells were extended to 80 population doublings, without any change in cell morphology or population doubling times. Constitutive hTERT expression enhanced the replicative capacity and prevented terminal differentiation of CD34+ fetal liver hematopoietic stem and progenitor cells (FLHSPCs). Moreover, hTERT-transduced stem cells maintained their telomere length and telomerase activity. Conclusion: By introducing telomerase activity into hematopoietic stem and progenitor cells, their lifespan can be extended while maintaining stemness. These modified cells hold promise for invitro research focused on studying hematopoietic stem cells derived from fetal liver.