Unraveling the Ion-Accumulation-Induced Potential Limitations of MXene-Based Supercapacitors

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-12-21 DOI:10.1021/acsenergylett.4c03296
Yanting Xie, Haitao Zhang, Yuanxiao Qu, Xinglin Jiang, Junfeng Huang, Xiong Zhang, Yuyu Gao, Liang Tang, Qiang Lv, Xingxing Jiao, Weiqing Yang, Zhengyou He
{"title":"Unraveling the Ion-Accumulation-Induced Potential Limitations of MXene-Based Supercapacitors","authors":"Yanting Xie, Haitao Zhang, Yuanxiao Qu, Xinglin Jiang, Junfeng Huang, Xiong Zhang, Yuyu Gao, Liang Tang, Qiang Lv, Xingxing Jiao, Weiqing Yang, Zhengyou He","doi":"10.1021/acsenergylett.4c03296","DOIUrl":null,"url":null,"abstract":"MXenes are rising star materials for electrochemical energy storage, but their low potential window severely constrains their high-energy-density potential. When subjected to a high potential window, MXenes undergo an irreversible oxidative failure. However, the mechanisms behind this failure are not well understood. Here, we disclose a previously unreported ion-accumulation mechanism that limits the high operating potential of MXenes. Under excessive polarization at high potential, the representative MXene, Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, shows oxidation behavior but a reversible electrochemical response. Spectroscopic analyses and electrochemical kinetic field simulations disclose the conformational state variation, ion flux distribution, and vertical displacement behavior of MXene electrodes, confirming that electrolyte ions predominantly accumulate at the edges of overly thick stacked MXenes, with only a limited number shuttling freely into the interior. To address this potential-limiting ion-accumulation mechanism, we develop a transferring–engraving method to build free ion-shuttling ultrathin MXenes that guarantees a 100% increase in the potential window and a high volumetric energy density of 45.7 mWh cm<sup>–3</sup>.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"201 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03296","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes are rising star materials for electrochemical energy storage, but their low potential window severely constrains their high-energy-density potential. When subjected to a high potential window, MXenes undergo an irreversible oxidative failure. However, the mechanisms behind this failure are not well understood. Here, we disclose a previously unreported ion-accumulation mechanism that limits the high operating potential of MXenes. Under excessive polarization at high potential, the representative MXene, Ti3C2Tx, shows oxidation behavior but a reversible electrochemical response. Spectroscopic analyses and electrochemical kinetic field simulations disclose the conformational state variation, ion flux distribution, and vertical displacement behavior of MXene electrodes, confirming that electrolyte ions predominantly accumulate at the edges of overly thick stacked MXenes, with only a limited number shuttling freely into the interior. To address this potential-limiting ion-accumulation mechanism, we develop a transferring–engraving method to build free ion-shuttling ultrathin MXenes that guarantees a 100% increase in the potential window and a high volumetric energy density of 45.7 mWh cm–3.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Unraveling the Ion-Accumulation-Induced Potential Limitations of MXene-Based Supercapacitors Biomimetic Inorganic–Organic Protective Layer for Highly Stable and Reversible Zn Anodes Spiro-OMeTAD: Unique Redox Chemistry Driving The Hole Transport In Operando Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries Long-Cycling Lithium–Sulfur Batteries Enabled by Reactivating Inactive Lithium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1