Glycosylase Pretreatment with Chemical Labeling-Assisted HPLC-MS/MS: An Ultrasensitive and Reliable Strategy for Quantification of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in Genomic DNA
{"title":"Glycosylase Pretreatment with Chemical Labeling-Assisted HPLC-MS/MS: An Ultrasensitive and Reliable Strategy for Quantification of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in Genomic DNA","authors":"Jia-Hui Dong, Xu-Yang Shen, Yu-Nan Chen, Ying Liu, Chen-Yu Xue, Run-Hong Zhang, Ya-Hong Liu, Ying-Lin Zhou, Xin-Xiang Zhang","doi":"10.1021/acs.analchem.4c04339","DOIUrl":null,"url":null,"abstract":"8-Oxo-7,8-dihydro-2′-deoxyguanosine (dOG), the dominant oxidative product of 2′-deoxyguanosine (dG) under high levels of reactive oxygen species, usually serves as a biomarker for oxidative stress and a risk assessment factor for various diseases. Due to the extremely low abundance of dOG and the susceptibility of dOG detection to the interference of spurious oxidation, research on related biological processes is limited by insufficient sensitivity and specificity. In this work, an ultrasensitive and reliable approach for genome-wide dOG quantification was developed through chemical labeling-assisted high-performance liquid chromatography-tandem mass spectrometry with the introduction of glycosylase pretreatment. Upon derivatization by a novel labeling reagent rhodamine B ethylenediamine, the detection sensitivity of dOG was enhanced by 100-fold, and the detection limit was as low as 25 amol, which was superior to those of reported mass spectrometry-based methods. Potassium ferricyanide, as a single-electron oxidant, was shown to possess strong selectivity for dOG versus dG, improving the labeling specificity and reducing the interference from dG. The spurious oxidation during sample pretreatment was systematically explored and minimized, and a control assay of glycosylase pretreatment was proposed to further improve the quantitative accuracy of dOG. Precise quantification of endogenous dOG in different cells was achieved with less than 500 ng of genomic DNA. This method was successfully applied to the assessment of the overall level of oxidative damage under the treatment of glycosylase inhibitors, potentially contributing to the exploration of the complex role of dOG in physiological status and disease phenotype.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"38 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04339","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
8-Oxo-7,8-dihydro-2′-deoxyguanosine (dOG), the dominant oxidative product of 2′-deoxyguanosine (dG) under high levels of reactive oxygen species, usually serves as a biomarker for oxidative stress and a risk assessment factor for various diseases. Due to the extremely low abundance of dOG and the susceptibility of dOG detection to the interference of spurious oxidation, research on related biological processes is limited by insufficient sensitivity and specificity. In this work, an ultrasensitive and reliable approach for genome-wide dOG quantification was developed through chemical labeling-assisted high-performance liquid chromatography-tandem mass spectrometry with the introduction of glycosylase pretreatment. Upon derivatization by a novel labeling reagent rhodamine B ethylenediamine, the detection sensitivity of dOG was enhanced by 100-fold, and the detection limit was as low as 25 amol, which was superior to those of reported mass spectrometry-based methods. Potassium ferricyanide, as a single-electron oxidant, was shown to possess strong selectivity for dOG versus dG, improving the labeling specificity and reducing the interference from dG. The spurious oxidation during sample pretreatment was systematically explored and minimized, and a control assay of glycosylase pretreatment was proposed to further improve the quantitative accuracy of dOG. Precise quantification of endogenous dOG in different cells was achieved with less than 500 ng of genomic DNA. This method was successfully applied to the assessment of the overall level of oxidative damage under the treatment of glycosylase inhibitors, potentially contributing to the exploration of the complex role of dOG in physiological status and disease phenotype.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.