Glycosylase Pretreatment with Chemical Labeling-Assisted HPLC-MS/MS: An Ultrasensitive and Reliable Strategy for Quantification of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in Genomic DNA

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-12-21 DOI:10.1021/acs.analchem.4c04339
Jia-Hui Dong, Xu-Yang Shen, Yu-Nan Chen, Ying Liu, Chen-Yu Xue, Run-Hong Zhang, Ya-Hong Liu, Ying-Lin Zhou, Xin-Xiang Zhang
{"title":"Glycosylase Pretreatment with Chemical Labeling-Assisted HPLC-MS/MS: An Ultrasensitive and Reliable Strategy for Quantification of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in Genomic DNA","authors":"Jia-Hui Dong, Xu-Yang Shen, Yu-Nan Chen, Ying Liu, Chen-Yu Xue, Run-Hong Zhang, Ya-Hong Liu, Ying-Lin Zhou, Xin-Xiang Zhang","doi":"10.1021/acs.analchem.4c04339","DOIUrl":null,"url":null,"abstract":"8-Oxo-7,8-dihydro-2′-deoxyguanosine (dOG), the dominant oxidative product of 2′-deoxyguanosine (dG) under high levels of reactive oxygen species, usually serves as a biomarker for oxidative stress and a risk assessment factor for various diseases. Due to the extremely low abundance of dOG and the susceptibility of dOG detection to the interference of spurious oxidation, research on related biological processes is limited by insufficient sensitivity and specificity. In this work, an ultrasensitive and reliable approach for genome-wide dOG quantification was developed through chemical labeling-assisted high-performance liquid chromatography-tandem mass spectrometry with the introduction of glycosylase pretreatment. Upon derivatization by a novel labeling reagent rhodamine B ethylenediamine, the detection sensitivity of dOG was enhanced by 100-fold, and the detection limit was as low as 25 amol, which was superior to those of reported mass spectrometry-based methods. Potassium ferricyanide, as a single-electron oxidant, was shown to possess strong selectivity for dOG versus dG, improving the labeling specificity and reducing the interference from dG. The spurious oxidation during sample pretreatment was systematically explored and minimized, and a control assay of glycosylase pretreatment was proposed to further improve the quantitative accuracy of dOG. Precise quantification of endogenous dOG in different cells was achieved with less than 500 ng of genomic DNA. This method was successfully applied to the assessment of the overall level of oxidative damage under the treatment of glycosylase inhibitors, potentially contributing to the exploration of the complex role of dOG in physiological status and disease phenotype.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"38 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04339","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

8-Oxo-7,8-dihydro-2′-deoxyguanosine (dOG), the dominant oxidative product of 2′-deoxyguanosine (dG) under high levels of reactive oxygen species, usually serves as a biomarker for oxidative stress and a risk assessment factor for various diseases. Due to the extremely low abundance of dOG and the susceptibility of dOG detection to the interference of spurious oxidation, research on related biological processes is limited by insufficient sensitivity and specificity. In this work, an ultrasensitive and reliable approach for genome-wide dOG quantification was developed through chemical labeling-assisted high-performance liquid chromatography-tandem mass spectrometry with the introduction of glycosylase pretreatment. Upon derivatization by a novel labeling reagent rhodamine B ethylenediamine, the detection sensitivity of dOG was enhanced by 100-fold, and the detection limit was as low as 25 amol, which was superior to those of reported mass spectrometry-based methods. Potassium ferricyanide, as a single-electron oxidant, was shown to possess strong selectivity for dOG versus dG, improving the labeling specificity and reducing the interference from dG. The spurious oxidation during sample pretreatment was systematically explored and minimized, and a control assay of glycosylase pretreatment was proposed to further improve the quantitative accuracy of dOG. Precise quantification of endogenous dOG in different cells was achieved with less than 500 ng of genomic DNA. This method was successfully applied to the assessment of the overall level of oxidative damage under the treatment of glycosylase inhibitors, potentially contributing to the exploration of the complex role of dOG in physiological status and disease phenotype.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖基酶预处理与化学标记辅助HPLC-MS/MS:一种超灵敏可靠的定量基因组DNA中8-氧-7,8-二氢-2 ' -脱氧鸟苷的策略
8- oxo -7,8-二氢-2 ' -脱氧鸟苷(dOG)是2 ' -脱氧鸟苷(dG)在高活性氧水平下的主要氧化产物,通常作为氧化应激的生物标志物和多种疾病的风险评估因素。由于狗的丰度极低,而且狗的检测容易受到虚假氧化的干扰,因此对相关生物过程的研究受到灵敏度和特异性不足的限制。在这项工作中,通过引入糖基酶预处理的化学标记辅助高效液相色谱-串联质谱法,开发了一种超灵敏、可靠的全基因组狗定量方法。经新型标记试剂罗丹明B乙二胺衍生化后,dOG的检测灵敏度提高了100倍,检出限低至25 amol,优于已有的基于质谱的方法。铁氰化钾作为一种单电子氧化剂,对dOG和dG具有较强的选择性,提高了标记特异性,减少了dG的干扰。系统探索和减少样品前处理过程中的虚假氧化,并提出糖基酶前处理的对照试验,以进一步提高dOG的定量准确性。在不到500 ng的基因组DNA中实现了不同细胞内源性狗的精确定量。该方法成功应用于糖基酶抑制剂处理下氧化损伤的总体水平评估,可能有助于探索dOG在生理状态和疾病表型中的复杂作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
NIR-II Fluorescent Timer-Embedded Drug for Real-Time Tracing of Immunogenic Cell Death and Guiding Chemo-immunotherapy Quantum Dot Digital Immunoassays on a Recyclable High-Refractive-Index Bead Array Imaged with a Low-Numerical-Aperture Objective Water Radical Anion/Cation Pair-Induced C–F Activation for Sensitive Ambient Mass Spectrometry of Perfluoroalkanes Substrate-Driven Coenzyme Activating Oxidase-Like Activity of Copper-Based Nanozymes for Robust Profiling of Sulfonamides Correction to “In Situ Derivatization Combined with DESI-MRM-MS/MS for Spatial Mapping Intratissue Amine-Containing Metabolites, Trimethylamine as a Case”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1