A 2DEG-Based GaN-on-Si Terahertz Modulator with Multi-Mode Switchable Control

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-11-02 DOI:10.1002/adom.202401873
Shanri Chen, Siyu Duan, Yongtu Zou, Shaolin Zhou, Jingbo Wu, Biaobing Jin, Haoshen Zhu, Wenquan Che, Quan Xue
{"title":"A 2DEG-Based GaN-on-Si Terahertz Modulator with Multi-Mode Switchable Control","authors":"Shanri Chen,&nbsp;Siyu Duan,&nbsp;Yongtu Zou,&nbsp;Shaolin Zhou,&nbsp;Jingbo Wu,&nbsp;Biaobing Jin,&nbsp;Haoshen Zhu,&nbsp;Wenquan Che,&nbsp;Quan Xue","doi":"10.1002/adom.202401873","DOIUrl":null,"url":null,"abstract":"<p>As terahertz (THz) technology has been widely considered as a key candidate for future sixth-generation wireless communication networks, THz modulators show profound significance in wireless communication, data storage, and imaging. In special, dynamic tuning of THz waves through 2D electron gas (2DEG) incorporated with a hybrid design of metasurface has attracted keen interest due to the combined merits of deliberate structural design, rapid switching speed and the process compatibility. Current meta-modulator enables very high modulation depth but encounter limited bandwidth. In this paper, by taking into account the co-functional effects of temperature and voltage-dependent dynamic control on transmission amplitude, a 2DEG-based GaN-on-Si modulator with two switchable operational states (or four modes) of active wave control is proposed. Under cryogenic temperature conditions, the proposed device exhibits prominent 2D plasmons characteristics with switchable transitions between the gated mode and ungated mode for active control. Under room temperature conditions, the proposed device exhibits non-resonance broadband spectra characteristics with tunable transitions between the linearity mode and depletion mode for transmission control. The scheme provides an option for the development of the actively tunable THz meta-modulator and paves a way for the robust multifunctionality of electrically controllable THz switching, and biosensors.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 36","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401873","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As terahertz (THz) technology has been widely considered as a key candidate for future sixth-generation wireless communication networks, THz modulators show profound significance in wireless communication, data storage, and imaging. In special, dynamic tuning of THz waves through 2D electron gas (2DEG) incorporated with a hybrid design of metasurface has attracted keen interest due to the combined merits of deliberate structural design, rapid switching speed and the process compatibility. Current meta-modulator enables very high modulation depth but encounter limited bandwidth. In this paper, by taking into account the co-functional effects of temperature and voltage-dependent dynamic control on transmission amplitude, a 2DEG-based GaN-on-Si modulator with two switchable operational states (or four modes) of active wave control is proposed. Under cryogenic temperature conditions, the proposed device exhibits prominent 2D plasmons characteristics with switchable transitions between the gated mode and ungated mode for active control. Under room temperature conditions, the proposed device exhibits non-resonance broadband spectra characteristics with tunable transitions between the linearity mode and depletion mode for transmission control. The scheme provides an option for the development of the actively tunable THz meta-modulator and paves a way for the robust multifunctionality of electrically controllable THz switching, and biosensors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Er:LiNbO3 Quantum Memory Platform Optimized with Dynamic Defect Annealing (Advanced Optical Materials 36/2024) Nanometric Ge Films for Ultrafast Modulation of THz Waves with Flexible Metasurface (Advanced Optical Materials 36/2024) Highly Refractive Transparent Half-Heuslers for Near Infrared Optics and Their Material Design (Advanced Optical Materials 36/2024) Masthead: (Advanced Optical Materials 36/2024) Retina-Like Neuromorphic Visual Sensor for Sensing Broad-Spectrum Ultraviolet Light (Advanced Optical Materials 35/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1