Enhancing transformer windings monitoring: An approach using longitudinal branch-circuit conductance analysis

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2024-12-09 DOI:10.1049/gtd2.13342
Xiangping Kong, Zijun Bin, Jiansheng Li, Shiming Liu, Wenchen Zhao, Mengfei Wu
{"title":"Enhancing transformer windings monitoring: An approach using longitudinal branch-circuit conductance analysis","authors":"Xiangping Kong,&nbsp;Zijun Bin,&nbsp;Jiansheng Li,&nbsp;Shiming Liu,&nbsp;Wenchen Zhao,&nbsp;Mengfei Wu","doi":"10.1049/gtd2.13342","DOIUrl":null,"url":null,"abstract":"<p>The operating environment of transformers is getting more complex with the emergence of new energy sources and power electronic devices. This complexity can cause minor internal faults in transformer windings. Under the cumulative effect, minor faults gradually develop into serious faults, resulting in transformer damage. Conventional differential protection systems may have difficulty detecting these glitches and require avoiding the problem of protection false activation caused by inrush currents. This paper proposes a new online monitoring method for transformer windings based on longitudinal branch-circuit conductance to address this issue. First, a unified transformer equivalent circuit is proposed to represent transformers under normal conditions, inrush currents, and internal faults. Then, an online transformer monitoring method based on branch conductance is proposed, which is immune to inrush currents. This method aims to prevent delayed detection of faults during inrush currents, improving sensitivity and response speed, especially for minor turn-to-turn faults hidden in inrush currents. The proposed method also provides higher sensitivity to minor turn-to-turn faults and larger protection margins. Simulation and experimental results validate the effectiveness of this method.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 24","pages":"4358-4368"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13342","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The operating environment of transformers is getting more complex with the emergence of new energy sources and power electronic devices. This complexity can cause minor internal faults in transformer windings. Under the cumulative effect, minor faults gradually develop into serious faults, resulting in transformer damage. Conventional differential protection systems may have difficulty detecting these glitches and require avoiding the problem of protection false activation caused by inrush currents. This paper proposes a new online monitoring method for transformer windings based on longitudinal branch-circuit conductance to address this issue. First, a unified transformer equivalent circuit is proposed to represent transformers under normal conditions, inrush currents, and internal faults. Then, an online transformer monitoring method based on branch conductance is proposed, which is immune to inrush currents. This method aims to prevent delayed detection of faults during inrush currents, improving sensitivity and response speed, especially for minor turn-to-turn faults hidden in inrush currents. The proposed method also provides higher sensitivity to minor turn-to-turn faults and larger protection margins. Simulation and experimental results validate the effectiveness of this method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加强变压器绕组监测:使用纵向支路电导分析的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
Dynamic equivalent modelling for active distributed network considering adjustable loads charging characteristics Enhancing transformer windings monitoring: An approach using longitudinal branch-circuit conductance analysis Dynamic sensitivity-based clustering of distributed energy resources using LoRaWAN technology for voltage regulation in distribution networks A joint data and knowledge-driven method for power system disturbance localisation Assessment of transmission network connection solutions based on HVAC for offshore wind
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1