Dominic Reinhardt, Julia Heupel, Cyril Popov, Ralf Wunderlich
{"title":"Front Cover: Laser Beam Induced Charge Collection for Defect Mapping and Spin State Readout in Diamond (Adv. Quantum Technol. 12/2024)","authors":"Dominic Reinhardt, Julia Heupel, Cyril Popov, Ralf Wunderlich","doi":"10.1002/qute.202470035","DOIUrl":null,"url":null,"abstract":"<p>Photocurrents in wide bandgap materials provide valuable insights into the dynamics of intrinsic defects. In article number 2400237, Ralf Wunderlich and co-workers use a commercially available charge integrator IC with switchable input on a printed circuit board (cover image) for low-noise current measurements with a resolution of about 100 fA. Thus, the authors can image and detect small numbers of individual defects in ultrapure diamond. Furthermore, the authors conduct photocurrent-detected magnetic resonance (PDMR) on NV centers. The work paves the way for low-cost, miniaturized, simple and time-resolved photocurrent measurements of solid-state defects.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202470035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202470035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photocurrents in wide bandgap materials provide valuable insights into the dynamics of intrinsic defects. In article number 2400237, Ralf Wunderlich and co-workers use a commercially available charge integrator IC with switchable input on a printed circuit board (cover image) for low-noise current measurements with a resolution of about 100 fA. Thus, the authors can image and detect small numbers of individual defects in ultrapure diamond. Furthermore, the authors conduct photocurrent-detected magnetic resonance (PDMR) on NV centers. The work paves the way for low-cost, miniaturized, simple and time-resolved photocurrent measurements of solid-state defects.