HRCUNet: Hierarchical Region Contrastive Learning for Segmentation of Breast Tumors in DCE-MRI

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Concurrency and Computation-Practice & Experience Pub Date : 2024-11-12 DOI:10.1002/cpe.8319
Jiezhou He, Zhiming Luo, Wei Peng, Songzhi Su, Xue Zhao, Guojun Zhang, Shaozi Li
{"title":"HRCUNet: Hierarchical Region Contrastive Learning for Segmentation of Breast Tumors in DCE-MRI","authors":"Jiezhou He,&nbsp;Zhiming Luo,&nbsp;Wei Peng,&nbsp;Songzhi Su,&nbsp;Xue Zhao,&nbsp;Guojun Zhang,&nbsp;Shaozi Li","doi":"10.1002/cpe.8319","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Segmenting breast tumors from dynamic contrast-enhanced magnetic resonance images is a critical step in the early detection and diagnosis of breast cancer. However, this task becomes significantly more challenging due to the diverse shapes and sizes of tumors, which make it difficult to establish a unified perception field for modeling them. Moreover, tumor regions are often subtle or imperceptible during early detection, exacerbating the issue of extreme class imbalance. This imbalance can lead to biased training and challenge accurately segmenting tumor regions from the predominant normal tissues. To address these issues, we propose a hierarchical region contrastive learning approach for breast tumor segmentation. Our approach introduces a novel hierarchical region contrastive learning loss function that addresses the class imbalance problem. This loss function encourages the model to create a clear separation between feature embeddings by maximizing the inter-class margin and minimizing the intra-class distance across different levels of the feature space. In addition, we design a novel Attention-based 3D Multi-scale Feature Fusion Residual Module to explore more granular multi-scale representations to improve the feature learning ability of tumors. Extensive experiments on two breast DCE-MRI datasets demonstrate that the proposed algorithm is more competitive against several state-of-the-art approaches under different segmentation metrics.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8319","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Segmenting breast tumors from dynamic contrast-enhanced magnetic resonance images is a critical step in the early detection and diagnosis of breast cancer. However, this task becomes significantly more challenging due to the diverse shapes and sizes of tumors, which make it difficult to establish a unified perception field for modeling them. Moreover, tumor regions are often subtle or imperceptible during early detection, exacerbating the issue of extreme class imbalance. This imbalance can lead to biased training and challenge accurately segmenting tumor regions from the predominant normal tissues. To address these issues, we propose a hierarchical region contrastive learning approach for breast tumor segmentation. Our approach introduces a novel hierarchical region contrastive learning loss function that addresses the class imbalance problem. This loss function encourages the model to create a clear separation between feature embeddings by maximizing the inter-class margin and minimizing the intra-class distance across different levels of the feature space. In addition, we design a novel Attention-based 3D Multi-scale Feature Fusion Residual Module to explore more granular multi-scale representations to improve the feature learning ability of tumors. Extensive experiments on two breast DCE-MRI datasets demonstrate that the proposed algorithm is more competitive against several state-of-the-art approaches under different segmentation metrics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HRCUNet:用于 DCE-MRI 中乳腺肿瘤分离的分层区域对比学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
期刊最新文献
Issue Information A Multi-Workflow Scheduling Approach With Explicit Evolutionary Multi-Objective Multi-Task Optimization Algorithm in Cloud Environment Measuring Thread Timing to Assess the Feasibility of Early-Bird Message Delivery Across Systems and Scales Issue Information Analysis and Fuzzy Neural Networks-Based Inertia Coefficient Adjustment Strategy of Power Converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1