Precise Regulation of Excited-State Intramolecular Proton-Transfer Materials for High-Efficiency Monochromatic and White-emitting OLEDs

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-11-28 DOI:10.1002/adom.202401684
Tao Yang, Qi Wei, Xinchen Jiang, Yujian Liu, Zhiqiang Gao, Baoxiu Mi, Quli Fan, Yan Qian
{"title":"Precise Regulation of Excited-State Intramolecular Proton-Transfer Materials for High-Efficiency Monochromatic and White-emitting OLEDs","authors":"Tao Yang,&nbsp;Qi Wei,&nbsp;Xinchen Jiang,&nbsp;Yujian Liu,&nbsp;Zhiqiang Gao,&nbsp;Baoxiu Mi,&nbsp;Quli Fan,&nbsp;Yan Qian","doi":"10.1002/adom.202401684","DOIUrl":null,"url":null,"abstract":"<p>Conventional fluorescent WOLEDs generate white light by incomplete energy transfer but face challenges in precisely controlling energy transfer and improving device efficiency due to the maximal utilization of 25% singlet excitons. In this study, two newly developed excited-state intramolecular proton transfer (ESIPT) fluorophores emit orange and white light. These fluorophores utilize excitons efficiently (70–88%) via high-level reverse intersystem crossing (hRISC) exclusively in the keto form and in both isomers (enol/keto), respectively. The white emitter, with comparable dual emissions, enables the fabrication of color-stable cold-white single-emitter OLED with a CRI of 74 and maximum external quantum efficiency (EQE) of up to 5.60%. The orange emitter, when combined with a sky-blue TADF fluorophore, creates non-energy-transferred single-emitting-layer (SML) high-performance cold- and pure-white WOLEDs with CIE coordinates of (0.26, 0.35) and (0.32, 0.32), and maximum EQEs of 13.34% and 9.66%, respectively. Importantly, these complementary-color WOLEDs demonstrate high reproducibility, offering advantages for industrial batch fabrication. Thus, this research presents a route to achieve cost-effective mass production of simple-structured and high-efficiency WOLEDs.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 36","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401684","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional fluorescent WOLEDs generate white light by incomplete energy transfer but face challenges in precisely controlling energy transfer and improving device efficiency due to the maximal utilization of 25% singlet excitons. In this study, two newly developed excited-state intramolecular proton transfer (ESIPT) fluorophores emit orange and white light. These fluorophores utilize excitons efficiently (70–88%) via high-level reverse intersystem crossing (hRISC) exclusively in the keto form and in both isomers (enol/keto), respectively. The white emitter, with comparable dual emissions, enables the fabrication of color-stable cold-white single-emitter OLED with a CRI of 74 and maximum external quantum efficiency (EQE) of up to 5.60%. The orange emitter, when combined with a sky-blue TADF fluorophore, creates non-energy-transferred single-emitting-layer (SML) high-performance cold- and pure-white WOLEDs with CIE coordinates of (0.26, 0.35) and (0.32, 0.32), and maximum EQEs of 13.34% and 9.66%, respectively. Importantly, these complementary-color WOLEDs demonstrate high reproducibility, offering advantages for industrial batch fabrication. Thus, this research presents a route to achieve cost-effective mass production of simple-structured and high-efficiency WOLEDs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传统的荧光 WOLED 通过不完全能量转移产生白光,但由于最大限度地利用了 25% 的单色激子,因此在精确控制能量转移和提高器件效率方面面临挑战。在这项研究中,两种新开发的激发态分子内质子转移(ESIPT)荧光体发出橙色和白色光。这些荧光团通过高水平反向系统间交叉(hRISC),分别以酮和两种异构体(烯醇/酮)的形式有效利用了激子(70-88%)。白色发射极具有可比的双发射功能,能够制造出色彩稳定的冷白色单发射极有机发光二极管,其显色指数(CRI)为 74,最大外部量子效率(EQE)高达 5.60%。橙色发射极与天蓝色 TADF 荧光体结合后,可制造出非能量转移单发射层(SML)高性能冷光和纯白 WOLED,其 CIE 坐标分别为(0.26, 0.35)和(0.32, 0.32),最大 EQE 分别为 13.34% 和 9.66%。重要的是,这些互补色 WOLED 具有很高的可重复性,为工业批量制造提供了优势。因此,这项研究为实现结构简单的高效 WOLED 的低成本批量生产提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Er:LiNbO3 Quantum Memory Platform Optimized with Dynamic Defect Annealing (Advanced Optical Materials 36/2024) Nanometric Ge Films for Ultrafast Modulation of THz Waves with Flexible Metasurface (Advanced Optical Materials 36/2024) Highly Refractive Transparent Half-Heuslers for Near Infrared Optics and Their Material Design (Advanced Optical Materials 36/2024) Masthead: (Advanced Optical Materials 36/2024) Retina-Like Neuromorphic Visual Sensor for Sensing Broad-Spectrum Ultraviolet Light (Advanced Optical Materials 35/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1