Masticatory Stress Maintains Mucosal Homeostasis via M2 Polarization

IF 5.7 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Journal of Dental Research Pub Date : 2024-12-21 DOI:10.1177/00220345241290778
M.Z. Ning, X.T. Zhai, X. Wang, H. Liu, J.S. Wang, X.G. Wang, S.L. Wang, L. Hu
{"title":"Masticatory Stress Maintains Mucosal Homeostasis via M2 Polarization","authors":"M.Z. Ning, X.T. Zhai, X. Wang, H. Liu, J.S. Wang, X.G. Wang, S.L. Wang, L. Hu","doi":"10.1177/00220345241290778","DOIUrl":null,"url":null,"abstract":"In addition to breaking down food, mastication plays regulatory roles in tissue homeostasis. During mastication, the oral mucosa is subjected to masticatory stress, and the maintenance between mucosal damage and repair is a key process. Despite rapid healing in the oral mucosa during chewing, the molecular mechanisms underlying repair remain unclear. In this study, we investigated the impact of masticatory stress on masticatory mucosal wound healing. Our data showed that reduced masticatory stress on the oral mucosa in mice fed a soft food diet resulted in decelerated hard palate mucosal wound healing and decreased numbers of Ki67-positive cells as compared with the hard food diet group. An RNA sequencing analysis revealed lower expression levels of the mechanosensitive gene Piezo1 in the hard palate mucosa, as well as lower levels of transforming growth factor β1 ( Tgf-β1) and Tgf-β receptor 2 ( Tgf-βr2), in the soft food diet group than the hard food diet group. Immunofluorescence staining, flow cytometry, and polymerase chain reaction analyses demonstrated that masticatory stress induced M2 polarization of macrophages surrounding the wound in the hard food diet group, leading to increased Tgf-β1 secretion. The specific deletion of Piezo1 in macrophages ( Piezo1<jats:sup>DLysm</jats:sup>) attenuated masticatory stress–induced accelerated healing in mice. These findings reveal the crucial role of masticatory stress–induced Piezo1 expression in tissue repair, potentially influencing M2 polarization of mucosal macrophages and Tgf-β1 secretion. These findings underscore the pivotal role of physical stimulation in the immune response and tissue repair and may provide important insights into therapeutic interventions for tissue repair.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"1 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241290778","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to breaking down food, mastication plays regulatory roles in tissue homeostasis. During mastication, the oral mucosa is subjected to masticatory stress, and the maintenance between mucosal damage and repair is a key process. Despite rapid healing in the oral mucosa during chewing, the molecular mechanisms underlying repair remain unclear. In this study, we investigated the impact of masticatory stress on masticatory mucosal wound healing. Our data showed that reduced masticatory stress on the oral mucosa in mice fed a soft food diet resulted in decelerated hard palate mucosal wound healing and decreased numbers of Ki67-positive cells as compared with the hard food diet group. An RNA sequencing analysis revealed lower expression levels of the mechanosensitive gene Piezo1 in the hard palate mucosa, as well as lower levels of transforming growth factor β1 ( Tgf-β1) and Tgf-β receptor 2 ( Tgf-βr2), in the soft food diet group than the hard food diet group. Immunofluorescence staining, flow cytometry, and polymerase chain reaction analyses demonstrated that masticatory stress induced M2 polarization of macrophages surrounding the wound in the hard food diet group, leading to increased Tgf-β1 secretion. The specific deletion of Piezo1 in macrophages ( Piezo1DLysm) attenuated masticatory stress–induced accelerated healing in mice. These findings reveal the crucial role of masticatory stress–induced Piezo1 expression in tissue repair, potentially influencing M2 polarization of mucosal macrophages and Tgf-β1 secretion. These findings underscore the pivotal role of physical stimulation in the immune response and tissue repair and may provide important insights into therapeutic interventions for tissue repair.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Dental Research
Journal of Dental Research 医学-牙科与口腔外科
CiteScore
15.30
自引率
3.90%
发文量
155
审稿时长
3-8 weeks
期刊介绍: The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.
期刊最新文献
Dasatinib and Quercetin Limit Gingival Senescence, Inflammation, and Bone Loss Metabolic Profiling of Individuals with Missing Teeth and Tooth Loss A Novel Dual Cross-linking Reagent for Dentin Bonding Interface Stability Posteruptive Loss of Proteins in Porcine Enamel Schwann Cell–Secreted S100B Promotes Wound Healing via Paracrine Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1