{"title":"Testing the molecular nature of the \\(\\Omega (2012)\\) with the \\(\\psi (3770) \\rightarrow \\bar{\\Omega } \\bar{K} \\Xi \\) and \\(\\psi (3770) \\rightarrow \\bar{\\Omega } \\bar{K} \\Xi ^*(1530) (\\bar{\\Omega } \\bar{K} \\pi \\Xi )\\) reactions","authors":"Jing Song, Wei-Hong Liang, Chu-Wen Xiao, Jorgivan Morais Dias, Eulogio Oset","doi":"10.1140/epjc/s10052-024-13710-9","DOIUrl":null,"url":null,"abstract":"<div><p>We report on the reactions <span>\\(\\psi (3770)\\rightarrow \\bar{\\Omega }^+ \\bar{K} \\Xi \\)</span> and <span>\\(\\psi (3770)\\rightarrow \\bar{\\Omega }^+ \\bar{K}\\Xi ^*(1530) \\;(\\Xi ^*(1530)\\rightarrow \\pi \\Xi \\)</span>), and calculate the mass distributions <span>\\(\\frac{\\textrm{d}\\Gamma }{\\textrm{d}M_\\text {inv}(\\bar{K}\\Xi )}\\)</span> and <span>\\(\\frac{\\textrm{d}\\Gamma }{\\textrm{d}M_\\text {inv}(\\bar{K}\\Xi ^*)}\\)</span>, respectively. We obtain clear peaks corresponding to the <span>\\(\\Omega (2012)\\)</span>. From the decay of <span>\\(\\psi (3770)\\rightarrow \\bar{\\Omega }^+ \\bar{K}\\Xi ^*\\)</span>, we also get a second, broader, peak around <span>\\(2035\\,\\mathrm MeV\\)</span>, which comes from the <span>\\(\\Omega (2012)\\)</span> decay to <span>\\(\\bar{K}\\Xi ^*\\)</span>. This second peak is closely tied to the molecular picture of the <span>\\(\\Omega (2012)\\)</span> with the <span>\\(\\bar{K}\\Xi ^*(1530)\\)</span> and <span>\\(\\eta \\Omega \\)</span> components. Its observation would provide a boost to the molecular picture of the <span>\\(\\Omega (2012)\\)</span>.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13710-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13710-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
We report on the reactions \(\psi (3770)\rightarrow \bar{\Omega }^+ \bar{K} \Xi \) and \(\psi (3770)\rightarrow \bar{\Omega }^+ \bar{K}\Xi ^*(1530) \;(\Xi ^*(1530)\rightarrow \pi \Xi \)), and calculate the mass distributions \(\frac{\textrm{d}\Gamma }{\textrm{d}M_\text {inv}(\bar{K}\Xi )}\) and \(\frac{\textrm{d}\Gamma }{\textrm{d}M_\text {inv}(\bar{K}\Xi ^*)}\), respectively. We obtain clear peaks corresponding to the \(\Omega (2012)\). From the decay of \(\psi (3770)\rightarrow \bar{\Omega }^+ \bar{K}\Xi ^*\), we also get a second, broader, peak around \(2035\,\mathrm MeV\), which comes from the \(\Omega (2012)\) decay to \(\bar{K}\Xi ^*\). This second peak is closely tied to the molecular picture of the \(\Omega (2012)\) with the \(\bar{K}\Xi ^*(1530)\) and \(\eta \Omega \) components. Its observation would provide a boost to the molecular picture of the \(\Omega (2012)\).
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.