Fabrication of Oro-Dispersible Sodium Valproate-Loaded Nanofibrous Patches for Immediate Epileptic Innervation.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-12-21 DOI:10.1021/acsbiomaterials.4c02294
Ece Guler, Humeyra B Yekeler, Zarife N Ozdemir Kumral, Gita Parviz, Gul S Ozcan, Burcu Uner, Sinem G Demirbas, Simge Ayyildiz, Yusufhan Yazir, Deepak Kalaskar, Muhammet E Cam
{"title":"Fabrication of Oro-Dispersible Sodium Valproate-Loaded Nanofibrous Patches for Immediate Epileptic Innervation.","authors":"Ece Guler, Humeyra B Yekeler, Zarife N Ozdemir Kumral, Gita Parviz, Gul S Ozcan, Burcu Uner, Sinem G Demirbas, Simge Ayyildiz, Yusufhan Yazir, Deepak Kalaskar, Muhammet E Cam","doi":"10.1021/acsbiomaterials.4c02294","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is one of the oldest neurological disorders discovered by mankind. This condition is firmly coupled with unprovoked seizures stimulated by irrepressible neuroelectrical blasts. Orally taken valproate family has been employed for prophylactic management; however, oral administration is not applicable for critical scenarios, thus calling for medication routes fulfilling necessities of immediate innervation. In order to address this shortcoming, sodium valproate entrapped in poly(ethylene oxide)/polyvinylpyrrolidone (PEO/PVP) nanofibrous patches was developed with the aim of sublingual drug delivery. Initially, the production process was designed and optimized via the central composite design (CCD). Nanofiber fabrication was accomplished with a novel device by using the pressurized gyration method. Fabricated biomaterials were chemically, spatially, and thermally inspected. The beanless and homogeneous appearance of both virgin and impregnated nanofibrous patches was morphologically demonstrated via scanning electron microscopy. Additionally, adequately oro-dispersed impregnated patches released more than 90% of their drug content in under a minute. Following <i>in vitro</i> cyto-safety assurance acquired through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on SH-SY5Y neuroblastoma cells, the protective antiepileptic effect of impregnated patches was affirmed <i>in vivo</i> via pentylenetetrazole kindled-induced <i>Mus musculus</i> animal modeling. The parameter of <i>in vivo</i> behavioral evaluation was the Racine scoring system. Moreover, histopathological distinctions detected between different test groups were highlighted via fluorescence staining. Finally, the oxidative stress was determined according to quantitative variations of malondialdehyde, glutathione, superoxide dismutase, and catalase levels. The overall conclusion herein suggests that sodium valproate-loaded PEO/PVP nanofibrous patches strikingly prevented behavioral, structural, and oxidative deteriorations caused by pentylenetetrazole.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02294","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is one of the oldest neurological disorders discovered by mankind. This condition is firmly coupled with unprovoked seizures stimulated by irrepressible neuroelectrical blasts. Orally taken valproate family has been employed for prophylactic management; however, oral administration is not applicable for critical scenarios, thus calling for medication routes fulfilling necessities of immediate innervation. In order to address this shortcoming, sodium valproate entrapped in poly(ethylene oxide)/polyvinylpyrrolidone (PEO/PVP) nanofibrous patches was developed with the aim of sublingual drug delivery. Initially, the production process was designed and optimized via the central composite design (CCD). Nanofiber fabrication was accomplished with a novel device by using the pressurized gyration method. Fabricated biomaterials were chemically, spatially, and thermally inspected. The beanless and homogeneous appearance of both virgin and impregnated nanofibrous patches was morphologically demonstrated via scanning electron microscopy. Additionally, adequately oro-dispersed impregnated patches released more than 90% of their drug content in under a minute. Following in vitro cyto-safety assurance acquired through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on SH-SY5Y neuroblastoma cells, the protective antiepileptic effect of impregnated patches was affirmed in vivo via pentylenetetrazole kindled-induced Mus musculus animal modeling. The parameter of in vivo behavioral evaluation was the Racine scoring system. Moreover, histopathological distinctions detected between different test groups were highlighted via fluorescence staining. Finally, the oxidative stress was determined according to quantitative variations of malondialdehyde, glutathione, superoxide dismutase, and catalase levels. The overall conclusion herein suggests that sodium valproate-loaded PEO/PVP nanofibrous patches strikingly prevented behavioral, structural, and oxidative deteriorations caused by pentylenetetrazole.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于即时癫痫神经支配的可分散丙戊酸钠纳米纤维贴片的制备。
癫痫是人类发现的最古老的神经系统疾病之一。这种情况与不可抑制的神经电原刺激的无端发作紧密结合。口服丙戊酸盐家族用于预防管理;然而,口服给药并不适用于危重情况,因此需要满足即时神经支配需要的给药途径。为了解决这一缺点,研究人员开发了丙戊酸钠包裹在聚环氧乙烷/聚乙烯吡咯烷酮(PEO/PVP)纳米纤维贴片中,目的是舌下给药。最初,通过中心复合设计(CCD)对生产工艺进行了设计和优化。采用一种新型装置,采用加压旋转法制备了纳米纤维。制备的生物材料进行了化学、空间和热检测。通过扫描电子显微镜,在形态学上证实了原生和浸渍纳米纤维斑块的无豆和均匀外观。此外,充分分散的浸渍贴片在一分钟内释放了90%以上的药物含量。通过3-(4,5-二甲基噻唑-2-基)-2,5-二苯基- 2h -四溴唑(MTT)对SH-SY5Y神经母细胞瘤细胞的体外细胞安全性试验,通过戊四唑点燃诱导的小鼠动物模型,证实了浸渍贴片的体内抗癫痫保护作用。在体行为评价参数采用拉辛评分系统。荧光染色显示各组间的组织病理学差异。最后,根据丙二醛、谷胱甘肽、超氧化物歧化酶和过氧化氢酶水平的定量变化来测定氧化应激。综上所述,丙戊酸钠负载的PEO/PVP纳米纤维贴片显著地阻止了戊四唑引起的行为、结构和氧化性恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Generalizable Metamaterials Design Techniques Inspire Efficient Mycelial Materials Inverse Design. Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly. Chitosan-Functionalized Fluorescent Calcium Carbonate Nanoparticle Loaded with Methotrexate: Future Theranostics for Triple Negative Breast Cancer. Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction. Thermosensitive Hydrogel Loaded with α-Mangostin for Enhanced Antitumor Effect of Doxorubicin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1