Biomimetic biomass-based composite carbon aerogels with excellent mechanical performance for energy storage and pressure sensing in extreme environments.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-12-15 DOI:10.1016/j.jcis.2024.12.051
Yuewei Jiang, Ziyi Shen, Ziyi Liu, Hui Gong, Bo Chen, Yingying Su, Jinghui Zhou, Xu Fei, Yao Li
{"title":"Biomimetic biomass-based composite carbon aerogels with excellent mechanical performance for energy storage and pressure sensing in extreme environments.","authors":"Yuewei Jiang, Ziyi Shen, Ziyi Liu, Hui Gong, Bo Chen, Yingying Su, Jinghui Zhou, Xu Fei, Yao Li","doi":"10.1016/j.jcis.2024.12.051","DOIUrl":null,"url":null,"abstract":"<p><p>The poor mechanical properties of biomass-based carbon aerogels after carbonization severely limit their application in pressure sensing and energy storage for wearable devices and electronic skin. In this work, a supramolecular assembly structure was designed inspired by the unique microstructure of natural wood for the preparation of biomass-based carbon aerogels with supercompressibility, elasticity, stable strain electrical signal response, and wide sensitive detection. Bacterial cellulose and lignin were selected as the main components of the biomass-based composite aerogel 'cell wall'. The graphene oxide with an aromatic structure was introduced to induce the assembly of firmly attached lignin and bacterial cellulose. The prepared biomass-based carbon aerogels exhibit supercompressibility (at least 100 cycles at 90 % strain), high elasticity (88.88 % height retention after 1000 cycles at a strain of 50 %), surprising temperature-constant superelasticity and fatigue resistance (shape retention rate greater than 85 %) at -196 ℃. In particular, it exhibits temperature-invariant high linear sensitivity over an extremely wide operating pressure range (0-43 kPa), allowing accurate detection of human signals. In addition, the prepared carbon aerogels exhibit excellent performance in supercapacitors. It has a specific capacitance of 158F/g at a current density of 1 A/g and an energy density of 18.75 Wh/kg at a high power density of 2500 W/g. This strategy also demonstrates its promise as a wearable device in hostile environments.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"786-798"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.051","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The poor mechanical properties of biomass-based carbon aerogels after carbonization severely limit their application in pressure sensing and energy storage for wearable devices and electronic skin. In this work, a supramolecular assembly structure was designed inspired by the unique microstructure of natural wood for the preparation of biomass-based carbon aerogels with supercompressibility, elasticity, stable strain electrical signal response, and wide sensitive detection. Bacterial cellulose and lignin were selected as the main components of the biomass-based composite aerogel 'cell wall'. The graphene oxide with an aromatic structure was introduced to induce the assembly of firmly attached lignin and bacterial cellulose. The prepared biomass-based carbon aerogels exhibit supercompressibility (at least 100 cycles at 90 % strain), high elasticity (88.88 % height retention after 1000 cycles at a strain of 50 %), surprising temperature-constant superelasticity and fatigue resistance (shape retention rate greater than 85 %) at -196 ℃. In particular, it exhibits temperature-invariant high linear sensitivity over an extremely wide operating pressure range (0-43 kPa), allowing accurate detection of human signals. In addition, the prepared carbon aerogels exhibit excellent performance in supercapacitors. It has a specific capacitance of 158F/g at a current density of 1 A/g and an energy density of 18.75 Wh/kg at a high power density of 2500 W/g. This strategy also demonstrates its promise as a wearable device in hostile environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Regulating the dispersion of CuO over SiO2 surface for selective oxidation of isobutane to tert-butanol. Photoclick surface modification of MOF-808 for galactose-mediated targeted chemotherapy. A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1